
Earwax

Mar 22, 2021

Contents:

1 Introduction 1
1.1 Project Goals . 1
1.2 Workflow . 1
1.3 Full Example . 1

2 Installation 3

3 Installing Using pip 5

4 Install Using Git 7

5 Running Tests 9

6 Building Documentation 11

7 Features 13
7.1 Implemented Features . 13
7.2 Feature Requests . 14

8 Tutorials 15
8.1 Getting Started . 15
8.2 Editors . 16
8.3 Creating An Editor . 16
8.4 Submitting Text . 16
8.5 Dismissing Editors . 16
8.6 Editing With The Hat . 17
8.7 Sounds . 17
8.8 Promises . 18
8.9 Stories . 20
8.10 Building Stories . 26

9 earwax 29
9.1 earwax package . 29

10 Indices and tables 173

Python Module Index 175

i

Index 177

ii

CHAPTER 1

Introduction

1.1 Project Goals

Earwax is an audio game library with a focus on readable code, minimal boilerplate, and rapid prototyping.

It should be possible to create a basic game with basic code. It should also be possible to add layers of complexity
without the game library holding you back.

1.2 Workflow

The basic flow of an Earwax program is:

• Create a Game instance.

• Create 1 or more Level instances.

• Add actions to the level instance(s) you created in the previous step.

• Create a pyglet Window instance.

• Run the game object you created in step ‘ with the window object you created in the previous step.

1.3 Full Example

The below code is a full -albeit minimal - code example:

from earwax import Game, Level
from pyglet.window import key, mouse, Window
w = Window(caption='Test Game')
g = Game()
l = Level(g)

(continues on next page)

1

Earwax

(continued from previous page)

@l.action('Key speak', symbol=key.S)
def key_speak():

"""Say something when the s key is pressed."""
g.output('You pressed the s key.')

@l.action('Mouse speak', mouse_button=mouse.LEFT)
def mouse_speak():

"""Speak when the left mouse button is pressed."""
g.output('You pressed the left mouse button.')

@l.action('Quit', symbol=key.ESCAPE, mouse_button=mouse.RIGHT)
def do_quit():

"""Quit the game."""
g.stop()

g.run(w, initial_level=l)

2 Chapter 1. Introduction

CHAPTER 2

Installation

3

Earwax

4 Chapter 2. Installation

CHAPTER 3

Installing Using pip

It is recommended that you install Earwax using pip:

pip install Earwax

5

Earwax

6 Chapter 3. Installing Using pip

CHAPTER 4

Install Using Git

Alternatively, you could install using git:

git clone https://github.com/chrisnorman7/earwax.git
cd earwax
python setup.py

7

Earwax

8 Chapter 4. Install Using Git

CHAPTER 5

Running Tests

To run the tests, you will need to install pytest:

pip install pytest

Then to run the tests:

py.test

While the tests run, many windows will appear and disappear. That is completely normal, I just use lots of Pyglet for
testing.

9

https://pytest.org/

Earwax

10 Chapter 5. Running Tests

CHAPTER 6

Building Documentation

You can always find the most up to date version of the docs on Read the Docs, but you can also build them yourself:

pip install -Ur docs/requirements.txt
python setup.py build_sphinx

11

https://earwax.readthedocs.io/en/latest/

Earwax

12 Chapter 6. Building Documentation

CHAPTER 7

Features

7.1 Implemented Features

• Ability to separate disparate parts of a game into Level constructs.

• Ability to push, pop, and replace Level instances on the central Game object.

• Uses Pyglet’s event system, mostly eliminating the need to subclass.

• Uses Synthizer as its sound backend.

• Both simple and advanced sound players, designed for playing interface sounds.

• A flexible and unobtrusive configuration framework that uses yaml.

• The ability to configure various aspects of the framework (including generic sound icons in menus), simply by
setting configuration values on a configuration object which resides on your game object.

• Various functions for playing sounds and cleaning them up when they’re finished.

• Different types of levels already implemented:

– Game board levels, so you can create board games with minimal boilerplate.

– Box levels, which contain boxes, which can be connected together to make maps. Both free and restricted
movement commands are already implemented.

• The ability to add actions to earwax.Level instances with keyboard keys, mouse buttons, joystick buttons,
and joystick hat positions.

• A text-to-speech system which uses cytolk.

• An earwax command which can currently create default games.

• Various Promise-style classes for long-running tasks.

13

https://synthizer.github.io/
https://github.com/pauliyobo/cytolk

Earwax

7.2 Feature Requests

If you need a feature that is not already on this list, please submit a feature request.

14 Chapter 7. Features

https://github.com/chrisnorman7/earwax/issues/new

CHAPTER 8

Tutorials

This section contains various tutorials that will show you how to use the different parts of earwax.

8.1 Getting Started

When getting started with any new library, it is often hard to know where to start. Earwax contains many tutorials, but
that doesn’t help you write your first line of code.

For writing your first game, there is the game command:

$ earwax game main.py
Creating a blank game at main.py.
Done.

This will create you a very minimal game, which can already be run:

$ python main.py

This should load up a game called “New Game”.

This game already has a few things to get you started:

• A main menu, with an entry to play the game, show credits, and exit.

• An initial level with a help menu. You can press Q from this level to return to the main menu.

• An extremely self-aggrandising default credit, mentioning Earwax, and its illustrious creator.

• Commented out lines which provide main menu, and initial level music.

This game serves as a starting point for your own work, and should be expanded upon.

15

index.html

Earwax

8.2 Editors

In earwax, an Editor represents a simple text editor.

Editors can be used for editing single lines of text. While it is entirely possible to add a line break to the text when you
create an Editor instance, pressing the enter key while an Editor instance is pushed onto your game will result in
the on_submit() event being dispatched.

8.3 Creating An Editor

Creating an editor can be done the same way you can create most earwax.Level instances:

e: Editor = Editor(game)

As you can see, a earwax.Game instance is necessary.

You can also supply a text argument:

e: editor = Editor(game, text='Hello world')

The cursor will be placed at the end of the text, and it can be edited with standard operating system commands, unless
you alter what motions are supported of course.

8.3.1 Motions

You can easily add extra motions, or override the default ones:

from pyglet.window import key

@e.motion(key.MOTION_BACKSPACE)
def backspace():

game.output('Backspace was pressed.')

Now, when the backspace key is pressed, your new event will fire too.

8.4 Submitting Text

When the enter key is pressed, or a game hat is used to select “submit” (more on that later), the earwax.Editor.
submit() method is called.

You can retrieve the text that was entered with the on_submit() event:

@e.event
def on_submit(text: str) -> None:

print('Text entered: %r.' % text)

8.5 Dismissing Editors

Like Earwax menus, editors are dismissible by default. This can of course be changed:

16 Chapter 8. Tutorials

Earwax

e: Editor = Editor(game, dismissible=False)

Now, when the escape key is pressed, nothing happens.

8.6 Editing With The Hat

You can use a game controller to edit text. Simply use the left and right directions to move through text, and the up
and down directions to select letters.

If you keep pressing the up hat, you will come to a delete option. One more up performs the deletion.

If your focus is at the end of the line, the delete option will be replaced with a “Submit” option instead. This is the
same as pressing the enter key.

8.7 Sounds

Being an audio game engine, sounds are a pretty important part of what Earwax can do.

As such, many useful sound functions have been added, with more to come.

This part of the tutorial will attempt to document some of these functions, more fully than the included documentation.

8.7.1 Buffer Directories

The idea behind the earwax.BufferDirectory class, is that quite often we need a single directory of sounds we
can pick from. This usually leads to code like the following:

room_ambiance = Sound('sounds/ambiances/room.wav')
station_ambiance = Sound('sounds/ambiances/station.wav')
ship_ambiance = Sound('sounds/ambiances/ship.wav')

This is particularly error prone, although has the benefit of letting you autocomplete variable names in your editor of
choice.

Inspired by a possible future feature of Synthizer, I decided to make a small utility class for the express purpose of
loading a directory of sounds. Using this class, the above code can be rewritten as:

from pathlib import Path

from earwax import BufferDirectory

ambiances: BufferDirectory = BufferDirectory(Path('sounds/ambiances'))

room_ambiance = 'room.wav'
station_ambiance = 'station.wav'
ship_ambiance = 'ship.wav'

Now you can for example get the station ambiance with the below code:

buffer: Buffer = ambiances.buffers[station_ambiance]

This is useful if for example you’ve moved the entire directory. Instead of performing a find and replace, you can
simply change the BufferDirectory instance:

8.6. Editing With The Hat 17

https://synthizer.github.io/

Earwax

ambiances: BufferDirectory = BufferDirectory(Path('sounds/amb'))

Another common idiom is to select a random sound file from a directory. Earwax has a few sound functions with
this capability already. If you pass a Path instance which happens to be a directory to earwax.play_path(), or
earwax.play_and_destroy(), then a random file will be selected from the resulting directory.

The BufferDirectory class takes things one step further:

lasers: BufferDirectory = BufferDirectory(Path('sounds/weapons/lasers'))

laser_buffer: Buffer = lasers.random_buffer()

This will get you a random buffer from lasers.buffers.

Sometimes you may have other files in a sounds directory in addition to the sound files themselves, attribution infor-
mation for example. If this is the case, simply pass a glob argument when instantiating the class, like so:

bd: BufferDirectory = BufferDirectory(Path('sounds/music'), glob='*.ogg')

In closing, the BufferDirectory class is useful if you have a directory of sound files, that you’ll want at some point
throughout the lifecycle of your game. Folders of music tracks, footstep sounds, and weapon sounds are just some of
the examples that spring to mind.

8.8 Promises

Promises are a way of running different kinds of tasks with Earwax.

The term is shamelessly stolen from JavaScript, and Earwax’s interpretation is largely the same: A promise is instan-
tiated, and set to run. At some point in the future, the promise will have a value, which can be listened for with the
on_done() event.

This part of the tutorial contains some further thoughts on using the different types of promise Earwax has to offer.

8.8.1 Threaded Promises

The inspiration for the earwax.ThreadedPromise class came from a game i was writing. I wanted to load assets,
as well as data from the internet, and it was taking ages. While things were loading, the game appeared to crash, which
obviously wasn’t good.

With the ThreadedPromise class, you can leave something to work in another thread, while the main thread
remains free to process input ETC. You can use the on_done() event to be notified of (and provided with) the return
value from your function.

For example:

promise: ThreadedPromise = ThreadedPromise(game.thread_pool)

@promise.register_func
def long_running_task() -> str:

Something which takes forever...
return 'Finished.'

@promise.event
(continues on next page)

18 Chapter 8. Tutorials

https://en.wikipedia.org/wiki/Glob_(programming)
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise

Earwax

(continued from previous page)

def on_done(value: str) -> None:
game.output('Task complete.')

promise.run()

As you can see from the above code, you use the register_func() method to register the function to use. That
function will be automatically called in another thread, and the result send to the on_done() event.

If your code is likely to raise an error, there is a on_error() event too:

from pyglet.event import event_handled

@promise.event
def on_error(e: Exception) -> bool:

game.output('Error: %r.' % e)
return event_handled

By default, the on_error event raises the passed error, so it is necessary to return the event_handled value to
prevent any other handlers from firing.

For the sake of completeness, there is a on_finally() event too:

@promise.event
def on_finally() -> None:

game.output('Done.')

This event will be dispatched when the promise has been completed, whether or not an exception was raised.

If you want to cancel, there is a cancel() method to do it with, and of course a on_cancel() event which will
be dispatched.

It is unlikely that the actual function will be cancelled, but you can rest assured that no further events will be dispatched.

When you have created all of your events, you should use the run() method to start your promise running.

It is worth noting that although this particular part of the tutorial concerns the ThreadedPromise class, all of
the events that have been mentioned are actually present on the earwax.Promise class, and it is simply up to
subclasses to implement them.

8.8.2 Staggered Promises

The earwax.StaggeredPromise class, which should have probably been called the ContinuationPromise
class, was created out of my desire to write MOO-style suspends in Python.

Using the class, you can simply yield a number, and your function will suspend for approximately that long:

from earwax.types import StaggeredPromiseGeneratorType

@StaggeredPromise.decorate
def promise() -> StaggeredPromiseGeneratorType:

game.output('Starting now.')
yield 2.0
game.output('Still working.')
yield 5.0
game.output('Done.')

(continues on next page)

8.8. Promises 19

Earwax

(continued from previous page)

promise.run()

The only event which differs from those found on :Threaded Promises, is the on_next() event.

This event is dispatched every time your promise function yields:

@promise.event
def on_next(delay: float) -> None:
print('Delay: %.2f' % delay)

8.9 Stories

Stories are a way to create simple games using Earwax with no code. Stories consist of rooms, which contain exits
and objects. Objects and exits in turn have actions which can be performed on them.

This document attempts to layout the steps involved in creating and editing a story.

8.9.1 Prerequisites

Before getting started, let’s make sure everything is installed correctly. This assumes you are comfortable with what-
ever terminal is offered by your system.

Make sure earwax is installed:

pip install -U earwax

Earwax is frequently changing, so it’s important you have the latest version.

If you want to copy and paste with earwax, you’ll need the Pyperclip package. Let’s install that now:

pip install -U pyperclip

This package is not necessary, but when you’re copy and pasting long sound paths, it’s certainly helpful.

8.9.2 Getting Started

Before we can edit a story, we must first create one. To do this, we use the story new subcommand of earwax:

earwax story new world.yaml

You should see something like the following:

Created Untitled World.

The filename can be whatever you want, and you are free to rename or move this file as you wish. Be aware however,
that unless the paths to the sound files you use are absolute, moving the file will not work as you expect.

20 Chapter 8. Tutorials

https://pypi.org/project/pyperclip/

Earwax

8.9.3 Playing a Story

Stories can be played with the story play command, like so:

earwax story play world.yaml

You can replace world.yaml in the command above to be whatever filename you have chosen for your world.

8.9.4 Editing a Story

Now we have created a story, let’s edit it.

When editing stories, you see the same interface as if you were a normal player. There are extra hotkeys of course, and
the main menu changes to present you with extra options for configuring the over all story, as well as Earwax itself.

To get started, type:

earwax story edit world.yaml

The filename in that command should be the same one you gave to the story new command.

You will see a couple of log lines printed to your terminal’s standard output, then you’ll be in the main menu.

8.9.5 The Main Menu

The main menu is largely the same whether you’re playing or editing a story. The difference is the number of items
which are displayed.

Start new game

Takes you into the game world, where you can perform your edits.

This option is also present when playing a story.

Load game

Start with a loaded saved game.

This option is also present when playing a story.

Show warnings

This option will show you a list of any warnings which were generated while loading the story file.

When you first edit a game, there will be 1 warning. This is because the default room that is created has no exits
leading from it.

Save story

This option will save any edits you have made so far. The story can also be saved by pressing control + s from within
the story itself.

8.9. Stories 21

Earwax

Configure Earwax

You can use this option to configure various parts of the game engine itself, such as the default menu sounds, and
whether or not speech and braille are enabled.

When you have finished in this menu, you must activate the “Return to main menu” option at the end. This is so that
the configuration can be saved, and you can be warned of any problems.

Add or remove credits

This option lets you add or remove credits from your game. This is useful if you plan to (or even need to) attribute
someone for assets used in your story.

Set initial room

This option lets you set the room which the player will end up in when they first start playing your game.

It won’t always be the room they appear in when they start playing, because they can save their progress, and then
load it using the Load game option.

Main menu music

This menu is where you can add or remove music from the main menu.

It is possible to have multiple tracks playing simultaneously, but you cannot alter their individual volumes.

World options

This menu allows you to rename your story, add an author, and set the default panning strategy.

Report Earwax bug

This option opens a web page where you can report a bug to Earwax.

As a personal note: Please please please use this if you find a problem. Letting me know personally is a great way to
get your bug report lost.

Exit

This option is fairly self-explanatory: It quits the game and closes the window.

What it doesn’t do is save your work. You have to do that manually.

Credits

When you have added credits to your game, an option for viewing them will appear in the main menu.

This option won’t appear unless there are credits, since showing an empty credits menu to players would serve no
purpose.

22 Chapter 8. Tutorials

https://github.com/chrisnorman7/earwax/issues/new

Earwax

8.9.6 Start Game

Choosing the first option “Start new game”, you will be placed into the first room.

Rooms

This room doesn’t really have that much going for it: It’s called “first_room”, which incidentally is also its ID, and it
has no meaningful description. Let’s change that now.

Renaming Rooms

There are two ways to rename a room: With a new textual name, or by “shadowing” the name of another room.

Simple Renaming

You can rename anything with this first method. Press the r key on any object you want to rename, and you can type
in a new name, before pressing enter.

Shadowing Names

Shadowing room names is only possible for rooms. It involves using the ID of another room, to “shadow” the name.

To do this, press shift + r. A menu will appear, showing every other room in the story. If you have no other
rooms, this menu will be empty.

It is worth noting that shadowing room names and descriptions can only work for one level of rooms. That is, you
cannot have room 1 shadow the name of room 2 which shadows the name of room 3. This is because you could also
then have room 3 shadowing the name of room 1, which would cause an infinite loop.

Describing a Room

Rooms are the only things in stories which can be described. You can describe a room with the e key. The d key is
not used, since this would conflict with dropping objects.

The key combination shift + e allows you to shadow the description of another room. Shadowing descriptions
follows the same rules as shadowing names.

Adding New Rooms

A world wouldn’t be much with only one room to visit. The way to create rooms - and incidentally exits and objects -
is with the c key.

If you press the c key, a menu will appear, allowing you to select what you would like to create.

Selecting Room from the bottom of this menu, will create - and move you to - another empty room.

8.9. Stories 23

Earwax

Moving Between Rooms

While exits are the primary way for players to move between rooms, it is helpful to have a quicker way as a builder.

Pressing the g key brings up a menu of rooms you can use to move quickly between rooms. This obviously bypasses
exits, allowing you to get to as yet unlinked rooms.

Exits

Exits are the only way for players to move between rooms. They must be built to link rooms, otherwise there will be
no way to access them.

Incidentally, unlinked (or inaccessible) rooms will result in warnings when editing worlds.

Building Exits

To create an exit, again use the c (create) key, and select Exit.

This will bring up a list of rooms (excluding the current one), which - when selected - will construct the exit.

Renaming Exits

You can rename an exit by first selecting it from the exits list, and pressing the r key.

Objects

The second entry in the create menu is for creating objects. You must be in the room where you plan to place the object
before you create. Taking the object and dropping it elsewhere will not actually “move” the object, and currently there
is no way to relocate objects.

This can be looked at if someone is upset by this lack enough to submit an issue.

Renaming Objects

You can rename an object by selecting it from the objects list, and pressing the r key.

Object Types

objects can have one of a couple of different types. You can change the object type with the t key.

The object types are listed below:

Cannot Be Taken

This type is best for stationary objects like scenery. It will not be possible to take such objects.

24 Chapter 8. Tutorials

https://github.com/chrisnorman7/earwax/issues/new?title=Relocating%20Objects%20in%20Stories

Earwax

Can Be Taken

Objects of this type can be picked up. Their take action dictates what message and sound is presented to the
player when they are taken.

If an object’s take action is not set, the world’s take action will be used instead.

Objects of this type cannot be dropped. If you think that’s stupid, read on (there is another type).

Can Be Dropped

Objects of this type can both be picked up and dropped.

The object’s drop action will be used to provide a message and a sound for when the object is dropped.

If there is no drop action on the object in question, the world’s default drop action will be used instead.

Can Be Used

This final type is not listed in the types menu. It is only applicable when a use action is specified for an object.
Otherwise, the object is considered unusable.

It is perfectly possible for an object to be usable but not droppable. It is even possible for an object to be usable, but
impossible for that object to be picked up in the first place. Note that this would be pointless, since the use action
can only be accessed by the player when the object is in their inventory.

Object Classes

Objects can belong to 0 or more classes. These classes are useful for grouping objects, and will be used to make
exits allow or disallow player access in the future.

To keep apprised of the work on exits, please track this issue.

To add and remove classes from an object, use the o key.

Object classes can be added and removed with the key combination shift + o.

Messages

Objects, exits, and the world itself all have messages. To set messages, use the m key.

This key will set different messages depending on which category is shown:

• When in the location category, edit the world messages.

• When an entry from the objects category is selected, you can set the message that is shown when any object
action is used.

• When an entry from the exits category is selected, you can set the message which is shown when using that
exit.

8.9. Stories 25

https://github.com/chrisnorman7/earwax/issues/5

Earwax

Sounds

You can set sounds for objects and exits, as well as the world itself.

To set sounds, use the s key. This key performs different actions, depending on which category is shown:

• When in the location category, edit the world sounds.

• When an entry from the objects category is selected, you can set the sound which is heard when any object
action is used.

• When an entry from the exits category is selected, you can set the sound which is heard when using that exit.

Ambiances

Using the a key, you can edit ambiances for the current room, and for objects.

Exits do not have ambiances, so the a key does nothing when in the exits category.

Actions

Actions are used throughout stories. They can be edited with the shift + a shortcut.

• When in the location category, you can edit (or clear) the default actions for the world.

• When an entry from the objects category is selected, you can edit (or delete) actions for when an object is
taken, dropped, or used, or you can edit the custom actions for the given object.

• When an entry from the exits category is selected, you can edit (or clear) the action which is used when the
exit is traversed.

8.9.7 Saving Stories

As mentioned in the Save Story section, you can save your story at any time with the keyboard shortcut control +
s.

8.10 Building Stories

You can build your story into a Python file with the story build command.

Assuming you have a world file named world.yaml, you can convert it to python with the command:

earwax story build world.yaml world.py

This will output world.py. You can then play your story with:

python world.py

If you wish to consolidate all your sounds, you can use the -s switch:

earwax story build world.yaml world.py -s assets

26 Chapter 8. Tutorials

Earwax

This will copy all your sound files into a folder named assets. Their names will be changed, and the folder structure
will be defined by earwax.

A note for screen reader users: It is not recommended that you read the generated python file line-by-line. This is
because the line which holds the YAML data for your world can be extremely long, and this negatively impacts screen
reader use.

8.10. Building Stories 27

Earwax

28 Chapter 8. Tutorials

CHAPTER 9

earwax

9.1 earwax package

9.1.1 Subpackages

earwax.cmd package

Subpackages

earwax.cmd.subcommands package

Submodules

earwax.cmd.subcommands.configure_earwax module

Provides the configure_earwax subcommand.

earwax.cmd.subcommands.configure_earwax.configure_earwax(args: arg-
parse.Namespace)
→ None

Configure earwax, using a earwax.ConfigMenu instance.

earwax.cmd.subcommands.conversation_tree module

Provides commands for working with call response trees.

earwax.cmd.subcommands.conversation_tree.edit_convo(args: argparse.Namespace) →
None

Edit a conversation tree.

29

Earwax

earwax.cmd.subcommands.conversation_tree.new_convo(args: argparse.Namespace) →
None

Create a new conversation tree.

earwax.cmd.subcommands.game module

Provides the game subcommand.

earwax.cmd.subcommands.game.new_game(args: argparse.Namespace)→ None
Create a default game.

earwax.cmd.subcommands.game_map module

Provides subcommands for working with maps.

earwax.cmd.subcommands.game_map.edit_map(args: argparse.Namespace)→ None
Edit the map at the given filename.

earwax.cmd.subcommands.game_map.new_map(args: argparse.Namespace)→ None
Create a new map.

earwax.cmd.subcommands.init_project module

Provides the init_project subcommand.

earwax.cmd.subcommands.init_project.init_project(args: argparse.Namespace)→ None
Initialise or update the project at the given directory.

earwax.cmd.subcommands.init_project.update()→ None
Update the given path to conform to the latest earwax file structure.

Parameters p – The path to update.

earwax.cmd.subcommands.story module

Provides the story subcommand.

earwax.cmd.subcommands.story.build_story(args: argparse.Namespace)→ None
Build the world.

earwax.cmd.subcommands.story.copy_action(action: earwax.story.world.WorldAction, destina-
tion: pathlib.Path, index: int)→ None

Copy the sound for the given action.

Parameters

• action – The action whose sound will be copied.

• destination – The destination the sound will be copied to.

If this directory does not exist, it will be created before the copy.

• index – The number to base the resulting file name on.

earwax.cmd.subcommands.story.copy_actions(actions: List[earwax.story.world.WorldAction],
destination: pathlib.Path)→ None

Copy the sounds from a list of action objects.

30 Chapter 9. earwax

Earwax

Parameters

• actions – The list of actions whose sounds will be copied.

• destination – The destination for the copied sounds.

If this directory does not exist, it will be created before the copy.

earwax.cmd.subcommands.story.copy_ambiances(ambiances: List[earwax.story.world.WorldAmbiance],
destination: pathlib.Path)→ None

Copy all ambiance files.

Parameters

• ambiances – The ambiances whose sounds will be copied.

• destination – The ambiances directory to copy into.

If this directory does not exist, it will be created before copying begins.

earwax.cmd.subcommands.story.copy_path(source: Union[str, pathlib.Path], destination: path-
lib.Path)→ str

Copy the given file or folder to the given destination.

Parameters

• source – Where to copy from.

• destination – The destination for the new file.

earwax.cmd.subcommands.story.create_story(args: argparse.Namespace)→ None
Create a new story.

earwax.cmd.subcommands.story.edit_story(args: argparse.Namespace)→ None
Edit the given story.

earwax.cmd.subcommands.story.get_filename(filename: str, index: int)→ str
Return a unique filename.

Given a filename of 'music/track.wav', and an index of 5, '5.wav' would be returned.

Parameters

• filename – The original filename (can include path).

• index – The index of this filename in whatever list is being iterated over.

earwax.cmd.subcommands.story.make_directory(directory: pathlib.Path)→ None
Make the given directory, if necessary.

if the given directory already exists, print a message to that effect.

Otherwise, create the directory, and print a message about it.

Parameters directory – The directory to create.

earwax.cmd.subcommands.story.play_story(args: argparse.Namespace, edit: bool = False)→
None

Load and play a story.

earwax.cmd.subcommands.vault module

Provides subcommands for working with vault files.

earwax.cmd.subcommands.vault.compile_vault(args: argparse.Namespace)→ None
Compile the given vault file.

9.1. earwax package 31

Earwax

earwax.cmd.subcommands.vault.new_vault(args: argparse.Namespace)→ None
Create a new vault file.

Module contents

A directory containing sub commands for the earwax utility.

Submodules

earwax.cmd.constants module

Provides various constants used by the script.

earwax.cmd.game_level module

Provides the GameLevel class.

class earwax.cmd.game_level.BoxLevelData(bearing: int = NOTHING)
Bases: earwax.mixins.DumpLoadMixin

A box level.

An instance of this class can be used to build a earwax.BoxLevel instance.

class earwax.cmd.game_level.GameLevel(name: str, data: Union[earwax.cmd.game_level.LevelData,
earwax.cmd.game_level.BoxLevelData], scripts:
List[earwax.cmd.game_level.GameLevelScript] =
NOTHING, id: str = NOTHING)

Bases: earwax.mixins.DumpLoadMixin

A game level.

This class is used in the GUI so that non-programmers can can create levels with no code.

Variables

• name – The name of this level.

• data – The data for this level.

• scripts – The scripts that are attached to this level.

class earwax.cmd.game_level.GameLevelScript(name: str, trigger: ear-
wax.cmd.game_level.Trigger, id: str =
NOTHING)

Bases: earwax.mixins.DumpLoadMixin

A script which is attached to a game level.

code
Return the code of this script.

If script_path does not exist, an empty string will be returned.

script_name
Return the script name (although not the path) for this script.

If you want the path, use the script_path attribute.

32 Chapter 9. earwax

Earwax

script_path
Return the path where code for this script resides.

If you want the filename, use the script_name attribute.

class earwax.cmd.game_level.LevelData
Bases: earwax.mixins.DumpLoadMixin

A standard earwax level.

An instance of this class can be used to build a earwax.Level instance.

class earwax.cmd.game_level.Trigger(symbol: Optional[str] = None, modifiers: List[str]
= NOTHING, mouse_button: Optional[str] = None,
hat_directions: Optional[str] = None, joystick_button:
Optional[int] = None)

Bases: earwax.mixins.DumpLoadMixin

A trigger that can activate a function in a game.

earwax.cmd.keys module

Provides keys for templates.

earwax.cmd.main module

The Earwax command line utility.

This module provides the cmd_main function, and all sub commands.

To run the client:

• Make sure Earwax and all its dependencies are up to date.

• In the folder where you wish to work, type earwax. This is a standard command line utility, which should
provide enough of its own help that no replication is required in this document.

NOTE: At the time of writing, only the earwax story command actually does all that much that is useful. Every-
thing else needs fleshing out.

If you want to create more subcommands, add them in the subcommands directory, then register them with the
subcommand() method.

earwax.cmd.main.add_help(subparser: argparse._SubParsersAction)→ argparse.ArgumentParser
Add a help command to any subcommand.

earwax.cmd.main.add_subcommands(_parser: argparse.ArgumentParser) → arg-
parse._SubParsersAction

Add subcommands to any parser.

Parameters _parser – The parser to add subcommands to.

earwax.cmd.main.cmd_help(subcommand: argparse._SubParsersAction) →
Callable[[argparse.Namespace], None]

Return a command function that will show all subcommands.

earwax.cmd.main.cmd_main()→ None
Run the earwax client.

9.1. earwax package 33

Earwax

earwax.cmd.main.subcommand(name: str, func: Callable[[argparse.Namespace],
None], subparser: argparse._SubParsersAction, format-
ter_class: Type[argparse.HelpFormatter] = <class ’arg-
parse.ArgumentDefaultsHelpFormatter’>, **kwargs) → arg-
parse.ArgumentParser

Add a subcommand to the argument parser.

Parameters

• name – The name of the new command.

• func – The function that will be called when this subcommand is used.

• subparser – The parser to add the sub command to.

• kwargs – Keyword arguments to be passed to commands.add_parser.

earwax.cmd.project module

Provides the Workspace class.

class earwax.cmd.project.Project(name: str, author: str = NOTHING, descrip-
tion: str = NOTHING, version: str = NOTH-
ING, requirements: str = NOTHING, credits:
List[earwax.cmd.project_credit.ProjectCredit] = NOTH-
ING, variables: List[earwax.cmd.variable.Variable] =
NOTHING, levels: List[earwax.cmd.game_level.GameLevel]
= NOTHING)

Bases: earwax.mixins.DumpLoadMixin

An earwax project.

This object holds the id of the initial map (if any), as well as global variables the user can create with the
global subcommand.

Variables

• name – The name of this project.

• author – The author of this project.

• description – A description for this project.

• version – The version string of this project.

• initial_map_id – The id of the first map to load with the game.

• credits – A list of credits for this project.

• variables – The variables created for this project.

earwax.cmd.project_credit module

Provides the ProjectCredit class.

class earwax.cmd.project_credit.ProjectCredit(name: str, url: str, sound: Optional[str],
loop: bool)

Bases: earwax.mixins.DumpLoadMixin

A representation of the earwax.Credit class.

This class has a different name to avoid possible confusion.

34 Chapter 9. earwax

Earwax

Variables

• name – The name of what is being credited.

• url – A URL for this credit.

• sound – The sound that will play when this credit is shown in a menu.

• loop – Whether or not ProjectCredit.sound should loop.

path
Return ProjectCredit.sound as a path.

earwax.cmd.variable module

Provides the Variable class.

class earwax.cmd.variable.Variable(name: str, type: earwax.cmd.variable.VariableTypes,
value: T, id: str = NOTHING)

Bases: typing.Generic, earwax.mixins.DumpLoadMixin

A variable in a game made with the earwax script.

Variables

• name – The name of the variable.

• type – The type of value.

• value – The value this variable holds.

• id – The id of this variable.

get_type()→ earwax.cmd.variable.VariableTypes
Return the type of this variable.

This method returns a member of VariableTypes.

classmethod load(data: Dict[str, Any], *args)→ earwax.cmd.variable.Variable
Load a variable, and check its type.

Parameters value – The value to load.

class earwax.cmd.variable.VariableTypes
Bases: enum.Enum

Provides the possible types of variable.

Variables

• type_int – An integer.

• type_float – A floating point number.

• type_string – a string.

• type_bool – A boolean value.

type_bool = 3

type_float = 1

type_int = 0

type_string = 2

9.1. earwax package 35

Earwax

Module contents

Earwax Script.

Command Line

This program allows you to create games with very little actual coding.

This document will be updated as this program matures.

earwax.cmd.cmd_main()→ None
Run the earwax client.

earwax.mapping package

Submodules

earwax.mapping.box module

Provides box-related classes, functions, and exceptions.

class earwax.mapping.box.Box(game: Game, start: earwax.point.Point, end: ear-
wax.point.Point, name: Optional[str] = None, surface_sound: Op-
tional[pathlib.Path] = None, wall_sound: Optional[pathlib.Path]
= None, type: earwax.mapping.box.BoxTypes = NOTHING, data:
Optional[T] = None, stationary: bool = NOTHING, reverb:
Optional[object] = NOTHING, box_level: Optional[BoxLevel] =
None)

Bases: typing.Generic, earwax.mixins.RegisterEventMixin

A box on a map.

You can create instances of this class either singly, or by using the earwax.Box.create_row() method.

If you already have a list of boxes, you can fit them all onto one map with the earwax.Box.
create_fitted() method.

Boxes can be assigned arbitrary user data:

b: Box[Enemy] = Box(start, end, data=Enemy())
b.data.do_something()

In addition to the coordinates supplied to this class’s constructor, a earwax.BoxBounds instance is created
as earwax.Box.bounds.

This class uses the pyglet.event framework, so you can register and dispatch events in the same way you would
with pyglet.window.Window, or any other EventDispatcher subclass.

Variables

• game – The game that this box will work with.

• start – The coordinates at the bottom rear left corner of this box.

• end – The coordinates at the top front right corner of this box.

• name – An optional name for this box.

• surface_sound – The sound that should be heard when walking in this box.

36 Chapter 9. earwax

https://pyglet.readthedocs.io/en/latest/modules/event.html

Earwax

• wall_sound – The sound that should be heard when colliding with walls in this box.

• type – The type of this box.

• data – Arbitrary data for this box.

• bounds – The bounds of this box.

• centre – The point that lies at the centre of this box.

• reverb – The reverb that is assigned to this box.

close()→ None
Close the attached door.

If this box is a door, set the open attribute of its data to False, and play the appropriate sound.
Otherwise, raise earwax.NotADoor.

Parameters door – The door to close.

contains_point(coordinates: earwax.point.Point)→ bool
Return whether or not this box contains the given point.

Returns True if this box spans the given coordinates, False otherwise.

Parameters coordinates – The coordinates to check.

could_fit(box: earwax.mapping.box.Box)→ bool
Return whether or not the given box could be contained by this one.

Returns True if the given box could be contained by this box, False otherwise.

This method behaves like the contains_point() method, except that it works with Box instances,
rather than Point instances.

This method simply checks that the start and end points would fit inside this box.

Parameters box – The box whose bounds will be checked.

classmethod create_fitted(game: Game, children: List[Box], pad_start: Op-
tional[earwax.point.Point] = None, pad_end: Op-
tional[earwax.point.Point] = None, **kwargs)→ BoxType

Return a box that fits all of children inside itself.

Pass a list of Box instances, and you’ll get a box with its start, and end attributes set to match the outer
bounds of the provided children.

You can use pad_start, and pad_end to add or subtract from the calculated start and end coordinates.

Parameters

• children – The list of Box instances to encapsulate.

• pad_start – A point to add to the calculated start coordinates.

• pad_end – A point to add to the calculated end coordinates.

• kwargs – The extra keyword arguments to pass to Box.__init__.

classmethod create_row(game: Game, start: earwax.point.Point, size: earwax.point.Point,
count: int, offset: earwax.point.Point, get_name: Op-
tional[Callable[[int], str]] = None, on_create: Op-
tional[Callable[[Box], None]] = None, **kwargs)→ List[BoxType]

Generate a list of boxes.

This method is useful for creating rows of buildings, or rooms on a corridor to name a couple of examples.

It can be used like so:

9.1. earwax package 37

Earwax

offices = Box.create_row(
game, # Every Box instance needs a game.
Point(0, 0), # The bottom_left corner of the first box.
Point(3, 2, 0), # The size of each box.
3, # The number of boxes to build.
The next argument is how far to move from the top right
corner of each created box:
Point(1, 0, 0),
We want to name each room. For that, there is a function!
get_name=lambda i: f'Room {i + 1}',
Let's make them all rooms.
type=RoomTypes.room

)

This will result in a list containing 3 rooms:

• The first from (0, 0, 0) to (2, 1, 0)

• The second from (3, 0, 0) to (5, 1, 0)

• And the third from (6, 0, 0) to (8, 1, 0)

PLEASE NOTE: If none of the size coordinates are >= 1, the top right coordinate will be less than the
bottom left, so get_containing_box() won’t ever find it.

Parameters

• start – The start coordinate of the first box.

• size – The size of each box.

• count – The number of boxes to build.

• offset – The distance between the boxes.

If no coordinate of the given value is >= 1, overlaps will occur.

• get_name – A function which should return an appropriate name.

This function will be called with the current position in the loop.

0 for the first room, 1 for the second, and so on.

• on_create – A function which will be called after each box is created.

The only provided argument will be the box that was just created.

• kwargs – Extra keyword arguments to be passed to Box.__init__.

get_nearest_point(point: earwax.point.Point)→ earwax.point.Point
Return the point on this box nearest to the provided point.

Parameters point – The point to start from.

handle_door()→ None
Open or close the door attached to this box.

handle_portal()→ None
Activate a portal attached to this box.

is_door
Return True if this box is a door.

is_portal
Return True if this box is a portal.

38 Chapter 9. earwax

Earwax

is_wall(p: earwax.point.Point)→ bool
Return True if the provided point is inside a wall.

Parameters p – The point to interrogate.

classmethod maze(game: Game, grid: ndarray, box_height: int = 3) → Generator[Box, None,
None]

Return a generator containing a list of boxes.

This constructor supports mazes generated by mazelib for example.

on_activate()→ None
Handle the enter key.

This event is dispatched when the player presses the enter key.

It is guaranteed that the instance this event is dispatched on is the one the player is stood on.

on_close()→ None
Handle this box being closed.

on_collide(coordinates: earwax.point.Point)→ None
Play an appropriate wall sound.

This function will be called by the Pyglet event framework, and should be called when a player collides
with this box.

on_footstep(bearing: float, coordinates: earwax.point.Point)→ None
Play an appropriate surface sound.

This function will be called by the Pyglet event framework, and should be called when a player is walking
on this box.

This event is dispatched by earwax.BoxLevel.move upon a successful move.

Parameters coordinates – The coordinates the player has just moved to.

on_open()→ None
Handle this box being opened.

open()→ None
Open the attached door.

If this box is a door, set the open attribute of its data to True, and play the appropriate sound. Other-
wise, raise earwax.NotADoor.

Parameters box – The box to open.

scheduled_close(dt: float)→ None
Call close().

This method will be called by pyglet.clock.schedule_once.

Parameters dt – The dt parameter expected by Pyglet’s schedule functions.

sound_manager
Return a suitable sound manager.

class earwax.mapping.box.BoxBounds(bottom_back_left: earwax.point.Point, top_front_right:
earwax.point.Point)

Bases: object

Bounds for a earwax.Box instance.

Variables

• bottom_back_left – The bottom back left point.

9.1. earwax package 39

Earwax

• top_front_right – The top front right point.

• bottom_front_left – The bottom front left point.

• bottom_front_right – The bottom front right point.

• bottom_back_right – The bottom back right point.

• top_back_left – The top back left point.

• top_front_left – The top front left point.

• top_back_right – The top back right point.

area
Return the area of the box.

depth
Get the depth of this box (front to back).

height
Return the height of this box.

is_edge(p: earwax.point.Point)→ bool
Return True if p represents an edge.

Parameters p – The point to interrogate.

volume
Return the volume of this box.

width
Return the width of this box.

exception earwax.mapping.box.BoxError
Bases: Exception

General box level error.

class earwax.mapping.box.BoxTypes
Bases: enum.Enum

The type of a box.

Variables

• empty – Empty space.

Boxes of this type can be traversed wit no barriers.

• room – An open room with walls around the edge.

Boxes of this type can be entered by means of a door. The programmer must provide some
means of exit.

• solid – Signifies a solid, impassible barrier.

Boxes of this type cannot be traversed.

empty = 0

room = 1

solid = 2

exception earwax.mapping.box.NotADoor
Bases: earwax.mapping.box.BoxError

40 Chapter 9. earwax

Earwax

The current box is not a door.

exception earwax.mapping.box.NotAPortal
Bases: earwax.mapping.box.BoxError

The current box is not a portal.

earwax.mapping.box_level module

Provides the BoxLevel class.

class earwax.mapping.box_level.BoxLevel(game: Game, boxes:
List[earwax.mapping.box.Box[typing.Any][Any]]
= NOTHING, coordinates: earwax.point.Point
= NOTHING, bearing: int = 0, current_box:
Optional[earwax.mapping.box_level.CurrentBox]
= None)

Bases: earwax.level.Level

A level that deals with sound generation for boxes.

This level can be used in your games. Simply bind the various action methods (listed below) to whatever triggers
suit your purposes.

Some of the attributes of this class refer to a “perspective”. This could theoretically be anything you want, but
most likely refers to the player. Possible exceptions include if you made an instance to represent some kind of
long range vision for the player.

Action-ready Methods

• move().

• show_coordinates()

• show_facing()

• turn()

• show_nearest_door()

• describe_current_box()

Variables

• box – The box that this level will work with.

• coordinates – The coordinates of the perspective.

• bearing – The direction the perspective is facing.

• current_box – The most recently walked over box.

If you don’t set this attribute when creating the instance, then the first time the player moves
using the move() method, the name of the box they are standing on will be spoken.

• reverb – An optional reverb to play sounds through.

You shouldn’t write to this property, instead use the connect_reverb() method to set
a new reverb, and disconnect_reverb() to clear.

activate(door_distance: float = 2.0)→ Callable[[], None]
Return a function that can be call when the enter key is pressed.

First we check if the current box is a portal. If it is, then we call handle_portal().

9.1. earwax package 41

Earwax

If it is not, we check to see if there is a door close enough to be opened or closed. If there is, then we call
handle_door() on it.

If none of this works, and there is a current box, dispatch the on_activate() event to let the box do
its own thing.

Parameters door_distance – How close doors have to be for this method to open or close
them.

add_box(box: earwax.mapping.box.Box[typing.Any][Any])→ None
Add a box to self.boxes.

Parameters box – The box to add.

add_boxes(boxes: Iterable[earwax.mapping.box.Box])→ None
Add multiple boxes with one call.

Parameters boxes – An iterable for boxes to add.

add_default_actions()→ None
Add some default actions.

This method adds the following actions:

• Move forward: W

• Turn 180 degrees: S

• Turn 45 degrees left: A

• Turn 45 degrees right: D

• Show coordinates: C

• Show the facing direction: F

• Describe current box: X

• Speak nearest door: Z

• Activate nearby objects: Return

calculate_coordinates(distance: float, bearing: int)→ Tuple[float, float]
Calculate coordinates at the given distance in the given direction.

Used by move() to calculate new coordinates.

Override this method if you want to change the algorithm used to calculate the target coordinates.

Please bear in mind however, that the coordinates this method returns should always be 2d.

Parameters

• distance – The distance which should be used.

• bearing – The bearing the new coordinates are in.

This value may not be the same as self.bearing.

collide(box: earwax.mapping.box.Box[typing.Any][Any], coordinates: earwax.point.Point)→ None
Handle collitions.

Called to run collision code on a box.

Parameters

• box – The box the player collided with.

• coordinates – The coordinates the player was trying to reach.

42 Chapter 9. earwax

Earwax

describe_current_box()→ None
Describe the current box.

get_angle_between(other: earwax.point.Point)→ float
Return the angle between the perspective and the other coordinates.

This function takes into account self.bearing.

Parameters other – The target coordinates.

get_boxes(t: Any)→ List[earwax.mapping.box.Box]
Return a list of boxes of the current type.

If no boxes are found, an empty list is returned.

Parameters t – The type of the boxes.

get_containing_box(coordinates: earwax.point.Point)→ Optional[earwax.mapping.box.Box]
Return the box that spans the given coordinates.

If no box is found, None will be returned.

This method scans self.boxes using the sort_boxes() method.

Parameters coordinates – The coordinates the box should span.

get_current_box()→ Optional[earwax.mapping.box.Box]
Get the box that lies at the current coordinates.

handle_box(box: earwax.mapping.box.Box[typing.Any][Any])→ None
Handle a bulk standard box.

The coordinates have already been set, and the on_footstep event dispatched, so all that is left is to
speak the name of the new box, if it is different to the last one, update self.reverb if necessary, and
store the new box.

move(distance: float = 1.0, vertical: Optional[float] = None, bearing: Optional[int] = None) →
Callable[[], None]

Return a callable that allows the player to move on the map.

If the move is successful (I.E.: There is a box at the destination coordinates), the on_move() event is
dispatched.

If not, then on_move_fail() is dispatched.

Parameters

• distance – The distance to move.

• vertical – An optional adjustment to be added to the vertical position.

• bearing – An optional direction to move in.

If this value is None, then self.bearing will be used.

nearest_by_type(start: earwax.point.Point, data_type: Any, same_z: bool = True) → Op-
tional[earwax.mapping.box_level.NearestBox]

Get the nearest box to the given point by type.

If no boxes of the given type are found, None will be returned.

Parameters

• start – The point to start looking from.

• data_type – The type of box data to search for.

• same_z – If this value is True, only boxes on the same z axis will be considered.

9.1. earwax package 43

Earwax

nearest_door(start: earwax.point.Point, same_z: bool = True) → Op-
tional[earwax.mapping.box_level.NearestBox]

Get the nearest door.

Iterates over all doors, and returned the nearest one.

Parameters

• start – The coordinates to start from.

• same_z – If True, then doors on different levels will not be considered.

nearest_portal(start: earwax.point.Point, same_z: bool = True) → Op-
tional[earwax.mapping.box_level.NearestBox]

Return the nearest portal.

Parameters

• start – The coordinates to start from.

• same_z – If True, then portals on different levels will not be considered.

on_move_fail(distance: float, vertical: Optional[float], bearing: int, coordinates: ear-
wax.point.Point)→ None

Handle a move failure.

An event that will be dispatched when the move() action has been used, but no move was performed.

Parameters

• distance – The distance value that was passed to move().

• vertical – The vertical value that was passed to move.

• bearing – The bearing argument that was passed to move, or self.bearing.

on_move_success()→ None
Handle a successful move.

An event that will be dispatched when the move() action is used.

By default, this method plays the correct footstep sound.

on_push()→ None
Set listener orientation, and start ambiances and tracks.

on_turn()→ None
Handle turning.

An event that will dispatched when the turn() action is used.

register_box(box: earwax.mapping.box.Box)→ None
Register a box that is already in the boxes list.

Parameters box – The box to register.

remove_box(box: earwax.mapping.box.Box[typing.Any][Any])→ None
Remove a box from self.boxes.

Parameters box – The box to remove.

set_bearing(angle: int)→ None
Set the direction of travel and the listener’s orientation.

Parameters angle – The bearing (in degrees).

44 Chapter 9. earwax

Earwax

set_coordinates(p: earwax.point.Point)→ None
Set the current coordinates.

Also set listener position.

Parameters p – The new point to assign to self.coordinates.

show_coordinates(include_z: bool = False)→ Callable[[], None]
Speak the current coordinates.

show_facing(include_angle: bool = True)→ Callable[[], None]
Return a function that will let you see the current bearing as text.

For example:

l = BoxLevel(...)
l.action('Show facing', symbol=key.F)(l.show_facing())

Parameters include_angle – If True, then the actual angle will be shown along with the
direction name.

show_nearest_door(max_distance: Optional[float] = None)→ Callable[[], None]
Return a callable that will speak the position of the nearest door.

Parameters max_distance – The maximum distance between the current coordinates and
the nearest door where the door will still be reported.

If this value is None, then any door will be reported.

sort_boxes()→ List[earwax.mapping.box.Box]
Return children sorted by area.

turn(amount: int)→ Callable[[], None]
Return a turn function.

Return a function that will turn the perspective by the given amount and dispatch the on_turn event.

For example:

l = BoxLevel(...)
l.action('Turn right', symbol=key.D)(l.turn(45))
l.action('Turn left', symbol=key.A)(l.turn(-45))

The resulting angle will always be in the range 0-359.

Parameters amount – The amount to turn by.

Positive numbers turn clockwise, while negative numbers turn anticlockwise.

walls_between(end: earwax.point.Point, start: Optional[earwax.point.Point] = None)→ int
Return the number of walls between two points.

Parameters

• end – The target coordinates.

• start – The coordinates to start at.

If this value is None, then the current coordinates will be used.

class earwax.mapping.box_level.CurrentBox(coordinates: earwax.point.Point, box: ear-
wax.mapping.box.Box[typing.Any][Any])

Bases: object

9.1. earwax package 45

Earwax

Store a reference to the current box.

This class stores the position too, so that caching can be performed.

Variables

• coordinates – The coordinates that were last checked.

• box – The last current box.

class earwax.mapping.box_level.NearestBox(box: earwax.mapping.box.Box, coordinates:
earwax.point.Point, distance: float)

Bases: object

A reference to the nearest box.

Variables

• box – The box that was found.

• coordinates – The nearest coordinates to the ones specified.

• distance – The distance between the supplied coordinates, and coordinates.

earwax.mapping.door module

Provides the Door class.

class earwax.mapping.door.Door(open: bool = True, closed_sound: Optional[pathlib.Path]
= None, open_sound: Optional[pathlib.Path] = None,
close_sound: Optional[pathlib.Path] = None, close_after:
Union[float, Tuple[float, float], None] = None, can_open:
Optional[Callable[[], bool]] = None, can_close: Op-
tional[Callable[[], bool]] = None)

Bases: object

An object that can be added to a box to optionally block travel.

Doors can currently either be open or closed. When opened, they can optionally close after a specified time:

Door() # Standard open door.
Door(open=False) # Closed door.
Door(close_after=5.0) # Will automatically close after 5 seconds.
A door that will automatically close between 5 and 10 seconds after
it has been opened:
Door(close_after=(5.0, 10.0)

Variables

• open – Whether or not this box can be walked on.

If this value is False, then the player will hear closed_sound when trying to walk on
this box.

If this value is True, the player will be able to enter the box as normal.

• closed_sound – The sound that will be heard if open is False.

• open_sound – The sound that will be heard when opening this door.

• close_sound – The sound that will be heard when closing this door.

46 Chapter 9. earwax

Earwax

• close_after – When (if ever) to close the door after it has been opened.

This attribute supports 3 possible values:

– None: The door will not close on its own.

– A tuple of two positive floats a and b: A random number between a and b will be
selected, and the door will automatically close after that time.

– A float: The exact time the door will automatically close after.

• can_open – An optional method which will be used to decide whether or not this door can
be opened at this time.

This method must return True or False, and must handle any messages which should be
sent to the player.

• can_close – An optional method which will be used to decide whether or not this door
can be closed at this time.

This method must return True or False, and must handle any messages which should be
sent to the player.

earwax.mapping.map_editor module

Provides the MapEditor class.

class earwax.mapping.map_editor.AnchorPoints
Bases: enum.Enum

The corners of a box points can be anchored to.

bottom_back_left = 0

bottom_back_right = 4

bottom_front_left = 2

bottom_front_right = 3

top_back_left = 5

top_back_right = 7

top_front_left = 6

top_front_right = 1

class earwax.mapping.map_editor.BoxPoint(box_id: Optional[str] = None, corner: Op-
tional[earwax.mapping.map_editor.AnchorPoints]
= None, x: int = 0, y: int = 0, z: int = 0)

Bases: earwax.mixins.DumpLoadMixin

Anchor a point to another box.

class earwax.mapping.map_editor.BoxTemplate(start: earwax.mapping.map_editor.BoxPoint
= NOTHING, end: ear-
wax.mapping.map_editor.BoxPoint =
NOTHING, name: str = ’Untitled Box’,
surface_sound: Optional[str] = None,
wall_sound: Optional[str] = None, type:
earwax.mapping.box.BoxTypes = NOTH-
ING, id: str = NOTHING, label: str =
NOTHING)

9.1. earwax package 47

Earwax

Bases: earwax.mixins.DumpLoadMixin

A template for creating a box.

Instances of this class will be dumped to the map file.

get_default_label()→ str
Get a unique ID.

exception earwax.mapping.map_editor.InvalidLabel
Bases: Exception

An invalid ID or label was given.

class earwax.mapping.map_editor.LevelMap(box_templates: List[earwax.mapping.map_editor.BoxTemplate]
= NOTHING, coordinates: ear-
wax.mapping.map_editor.BoxPoint = NOTHING,
bearing: int = 0, name: str = ’Untitled Map’,
notes: str = NOTHING)

Bases: earwax.mixins.DumpLoadMixin

A representation of a earwax.BoxLevel instance.

class earwax.mapping.map_editor.MapEditor(game: Game, boxes:
List[earwax.mapping.box.Box[typing.Any][Any]]
= NOTHING, coordinates: ear-
wax.point.Point = NOTHING, bear-
ing: int = 0, current_box: Op-
tional[earwax.mapping.box_level.CurrentBox]
= None, filename: Op-
tional[pathlib.Path] = None, context: ear-
wax.mapping.map_editor.MapEditorContext =
NOTHING)

Bases: earwax.mapping.box_level.BoxLevel

A level which can be used for editing maps.

When this level talks about a map, it talks about a earwax.mapping.map_editor.LevelMap instance.

box_menu(box: earwax.mapping.map_editor.MapEditorBox)→ None
Push a menu to configure the provided box.

box_sound(template: earwax.mapping.map_editor.BoxTemplate, name: str) → Callable[[], Genera-
tor[None, None, None]]

Push an editor for setting the given sound.

Parameters

• template – The template to modify.

• name – The name of the sound to modify.

box_sounds()→ None
Push a menu for configuring sounds.

boxes_menu()→ None
Push a menu to select a box to configure.

If there is only 1 box, it will not be shown.

complain_box()→ None
Complain about there being no box.

create_box()→ None
Create a box, then call box_menu().

48 Chapter 9. earwax

Earwax

get_default_context()→ earwax.mapping.map_editor.MapEditorContext
Return a suitable context.

id_box()→ Generator[None, None, None]
Change the ID for the current box.

label_box()→ Generator[None, None, None]
Rename the current box.

on_move_fail(distance: float, vertical: Optional[float], bearing: int, coordinates: ear-
wax.point.Point)→ None

Tell the user their move failed.

point_menu(template: earwax.mapping.map_editor.BoxTemplate, point: ear-
wax.mapping.map_editor.BoxPoint)→ Callable[[], None]

Push a menu for configuring individual points.

points_menu()→ None
Push a menu for moving the current box.

rename_box()→ Generator[None, None, None]
Rename the current box.

save()→ None
Save the map level.

class earwax.mapping.map_editor.MapEditorBox(game: Game, start: earwax.point.Point,
end: earwax.point.Point, name: Op-
tional[str] = None, surface_sound: Op-
tional[pathlib.Path] = None, wall_sound:
Optional[pathlib.Path] = None, type: ear-
wax.mapping.box.BoxTypes = NOTHING,
data: Optional[T] = None, stationary: bool
= NOTHING, reverb: Optional[object] =
NOTHING, box_level: Optional[BoxLevel]
= None, id: str = NOTHING)

Bases: earwax.mapping.box.Box

A box with an ID.

get_default_id()→ str
Raise an error if the id is not provided.

class earwax.mapping.map_editor.MapEditorContext(level: MapEditor, level_map: ear-
wax.mapping.map_editor.LevelMap,
template_ids: Dict[str, ear-
wax.mapping.map_editor.BoxTemplate]
= NOTHING, box_ids: Dict[str, ear-
wax.mapping.box.Box[str][str]] =
NOTHING)

Bases: object

A context to hold map information.

This class acts as an interface between a LevelMap instance, and a MapEditor instance.

add_template(template: earwax.mapping.map_editor.BoxTemplate, box: Op-
tional[earwax.mapping.map_editor.MapEditorBox] = None)→ None

Add a template to this context.

This method will add the given template to its box_template_ids dictionary.

Parameters template – The template to add.

9.1. earwax package 49

Earwax

reload_template(template: earwax.mapping.map_editor.BoxTemplate)→ None
Reload the given template.

This method recreates the box associated with the given template.

Parameters template – The template to reload.

to_box(template: earwax.mapping.map_editor.BoxTemplate) → ear-
wax.mapping.map_editor.MapEditorBox

Return a box from a template.

Parameters template – The template to convert.

to_point(data: earwax.mapping.map_editor.BoxPoint)→ earwax.point.Point
Return a point from the given data.

Parameters data – The BoxPoint to load the point from.

earwax.mapping.map_editor.iskeyword()
x.__contains__(y) <==> y in x.

earwax.mapping.map_editor.valid_label(text: str)→ None
Ensure the given label or ID is valid.

If it could not be used as a Python identifier for any reason, earwax.mapping.map_editor.
InvalidLabel will be raised.

Parameters text – The text to check.

earwax.mapping.portal module

Provides the Portal class.

class earwax.mapping.portal.Portal(level: BoxLevel, coordinates: earwax.point.Point,
bearing: Optional[int] = None, enter_sound: Op-
tional[pathlib.Path] = None, exit_sound: Op-
tional[pathlib.Path] = None, can_use: Op-
tional[Callable[[], bool]] = None)

Bases: earwax.mixins.RegisterEventMixin

A portal to another map.

An object that can be added to a earwax.Box to make a link between two maps.

This class implements pyglet.event.EventDispatcher, so events can be registered and dispatched on
it.

The currently-registered events are:

• on_enter()

• on_exit()

Variables

• level – The destination level.

• coordinates – The exit coordinates.

• bearing – If this value is None, then it will be used for the player’s bearing after this
portal is used. Otherwise, the bearing from the old level will be used.

50 Chapter 9. earwax

Earwax

• enter_sound – The sound that should play when entering this portal.

This sound is probably only used when an NPC uses the portal.

• exit_sound – The sound that should play when exiting this portal.

This is the sound that the player will hear when using the portal.

• can_use – An optional method which will be called to ensure that this portal can be used
at this time.

This function should return True or False, and should handle any messages which should
be sent to the player.

on_enter()→ None
Handle a player entering this portal.

on_exit()→ None
Handle a player exiting this portal.

Module contents

Mapping functions and classes for Earwax.

This module is inspired by Camlorn’s post at this link.

All credit goes to him for the idea.

class earwax.mapping.Box(game: Game, start: earwax.point.Point, end: earwax.point.Point,
name: Optional[str] = None, surface_sound: Optional[pathlib.Path]
= None, wall_sound: Optional[pathlib.Path] = None, type: ear-
wax.mapping.box.BoxTypes = NOTHING, data: Optional[T] = None,
stationary: bool = NOTHING, reverb: Optional[object] = NOTHING,
box_level: Optional[BoxLevel] = None)

Bases: typing.Generic, earwax.mixins.RegisterEventMixin

A box on a map.

You can create instances of this class either singly, or by using the earwax.Box.create_row() method.

If you already have a list of boxes, you can fit them all onto one map with the earwax.Box.
create_fitted() method.

Boxes can be assigned arbitrary user data:

b: Box[Enemy] = Box(start, end, data=Enemy())
b.data.do_something()

In addition to the coordinates supplied to this class’s constructor, a earwax.BoxBounds instance is created
as earwax.Box.bounds.

This class uses the pyglet.event framework, so you can register and dispatch events in the same way you would
with pyglet.window.Window, or any other EventDispatcher subclass.

Variables

• game – The game that this box will work with.

• start – The coordinates at the bottom rear left corner of this box.

• end – The coordinates at the top front right corner of this box.

• name – An optional name for this box.

9.1. earwax package 51

https://forum.audiogames.net/post/565561/#p565561
https://pyglet.readthedocs.io/en/latest/modules/event.html

Earwax

• surface_sound – The sound that should be heard when walking in this box.

• wall_sound – The sound that should be heard when colliding with walls in this box.

• type – The type of this box.

• data – Arbitrary data for this box.

• bounds – The bounds of this box.

• centre – The point that lies at the centre of this box.

• reverb – The reverb that is assigned to this box.

close()→ None
Close the attached door.

If this box is a door, set the open attribute of its data to False, and play the appropriate sound.
Otherwise, raise earwax.NotADoor.

Parameters door – The door to close.

contains_point(coordinates: earwax.point.Point)→ bool
Return whether or not this box contains the given point.

Returns True if this box spans the given coordinates, False otherwise.

Parameters coordinates – The coordinates to check.

could_fit(box: earwax.mapping.box.Box)→ bool
Return whether or not the given box could be contained by this one.

Returns True if the given box could be contained by this box, False otherwise.

This method behaves like the contains_point() method, except that it works with Box instances,
rather than Point instances.

This method simply checks that the start and end points would fit inside this box.

Parameters box – The box whose bounds will be checked.

classmethod create_fitted(game: Game, children: List[Box], pad_start: Op-
tional[earwax.point.Point] = None, pad_end: Op-
tional[earwax.point.Point] = None, **kwargs)→ BoxType

Return a box that fits all of children inside itself.

Pass a list of Box instances, and you’ll get a box with its start, and end attributes set to match the outer
bounds of the provided children.

You can use pad_start, and pad_end to add or subtract from the calculated start and end coordinates.

Parameters

• children – The list of Box instances to encapsulate.

• pad_start – A point to add to the calculated start coordinates.

• pad_end – A point to add to the calculated end coordinates.

• kwargs – The extra keyword arguments to pass to Box.__init__.

classmethod create_row(game: Game, start: earwax.point.Point, size: earwax.point.Point,
count: int, offset: earwax.point.Point, get_name: Op-
tional[Callable[[int], str]] = None, on_create: Op-
tional[Callable[[Box], None]] = None, **kwargs)→ List[BoxType]

Generate a list of boxes.

This method is useful for creating rows of buildings, or rooms on a corridor to name a couple of examples.

52 Chapter 9. earwax

Earwax

It can be used like so:

offices = Box.create_row(
game, # Every Box instance needs a game.
Point(0, 0), # The bottom_left corner of the first box.
Point(3, 2, 0), # The size of each box.
3, # The number of boxes to build.
The next argument is how far to move from the top right
corner of each created box:
Point(1, 0, 0),
We want to name each room. For that, there is a function!
get_name=lambda i: f'Room {i + 1}',
Let's make them all rooms.
type=RoomTypes.room

)

This will result in a list containing 3 rooms:

• The first from (0, 0, 0) to (2, 1, 0)

• The second from (3, 0, 0) to (5, 1, 0)

• And the third from (6, 0, 0) to (8, 1, 0)

PLEASE NOTE: If none of the size coordinates are >= 1, the top right coordinate will be less than the
bottom left, so get_containing_box() won’t ever find it.

Parameters

• start – The start coordinate of the first box.

• size – The size of each box.

• count – The number of boxes to build.

• offset – The distance between the boxes.

If no coordinate of the given value is >= 1, overlaps will occur.

• get_name – A function which should return an appropriate name.

This function will be called with the current position in the loop.

0 for the first room, 1 for the second, and so on.

• on_create – A function which will be called after each box is created.

The only provided argument will be the box that was just created.

• kwargs – Extra keyword arguments to be passed to Box.__init__.

get_nearest_point(point: earwax.point.Point)→ earwax.point.Point
Return the point on this box nearest to the provided point.

Parameters point – The point to start from.

handle_door()→ None
Open or close the door attached to this box.

handle_portal()→ None
Activate a portal attached to this box.

is_door
Return True if this box is a door.

9.1. earwax package 53

Earwax

is_portal
Return True if this box is a portal.

is_wall(p: earwax.point.Point)→ bool
Return True if the provided point is inside a wall.

Parameters p – The point to interrogate.

classmethod maze(game: Game, grid: ndarray, box_height: int = 3) → Generator[Box, None,
None]

Return a generator containing a list of boxes.

This constructor supports mazes generated by mazelib for example.

on_activate()→ None
Handle the enter key.

This event is dispatched when the player presses the enter key.

It is guaranteed that the instance this event is dispatched on is the one the player is stood on.

on_close()→ None
Handle this box being closed.

on_collide(coordinates: earwax.point.Point)→ None
Play an appropriate wall sound.

This function will be called by the Pyglet event framework, and should be called when a player collides
with this box.

on_footstep(bearing: float, coordinates: earwax.point.Point)→ None
Play an appropriate surface sound.

This function will be called by the Pyglet event framework, and should be called when a player is walking
on this box.

This event is dispatched by earwax.BoxLevel.move upon a successful move.

Parameters coordinates – The coordinates the player has just moved to.

on_open()→ None
Handle this box being opened.

open()→ None
Open the attached door.

If this box is a door, set the open attribute of its data to True, and play the appropriate sound. Other-
wise, raise earwax.NotADoor.

Parameters box – The box to open.

scheduled_close(dt: float)→ None
Call close().

This method will be called by pyglet.clock.schedule_once.

Parameters dt – The dt parameter expected by Pyglet’s schedule functions.

sound_manager
Return a suitable sound manager.

class earwax.mapping.BoxBounds(bottom_back_left: earwax.point.Point, top_front_right: ear-
wax.point.Point)

Bases: object

Bounds for a earwax.Box instance.

54 Chapter 9. earwax

Earwax

Variables

• bottom_back_left – The bottom back left point.

• top_front_right – The top front right point.

• bottom_front_left – The bottom front left point.

• bottom_front_right – The bottom front right point.

• bottom_back_right – The bottom back right point.

• top_back_left – The top back left point.

• top_front_left – The top front left point.

• top_back_right – The top back right point.

area
Return the area of the box.

depth
Get the depth of this box (front to back).

height
Return the height of this box.

is_edge(p: earwax.point.Point)→ bool
Return True if p represents an edge.

Parameters p – The point to interrogate.

volume
Return the volume of this box.

width
Return the width of this box.

class earwax.mapping.BoxTypes
Bases: enum.Enum

The type of a box.

Variables

• empty – Empty space.

Boxes of this type can be traversed wit no barriers.

• room – An open room with walls around the edge.

Boxes of this type can be entered by means of a door. The programmer must provide some
means of exit.

• solid – Signifies a solid, impassible barrier.

Boxes of this type cannot be traversed.

empty = 0

room = 1

solid = 2

exception earwax.mapping.NotADoor
Bases: earwax.mapping.box.BoxError

The current box is not a door.

9.1. earwax package 55

Earwax

exception earwax.mapping.NotAPortal
Bases: earwax.mapping.box.BoxError

The current box is not a portal.

class earwax.mapping.BoxLevel(game: Game, boxes: List[earwax.mapping.box.Box[typing.Any][Any]]
= NOTHING, coordinates: earwax.point.Point =
NOTHING, bearing: int = 0, current_box: Op-
tional[earwax.mapping.box_level.CurrentBox] = None)

Bases: earwax.level.Level

A level that deals with sound generation for boxes.

This level can be used in your games. Simply bind the various action methods (listed below) to whatever triggers
suit your purposes.

Some of the attributes of this class refer to a “perspective”. This could theoretically be anything you want, but
most likely refers to the player. Possible exceptions include if you made an instance to represent some kind of
long range vision for the player.

Action-ready Methods

• move().

• show_coordinates()

• show_facing()

• turn()

• show_nearest_door()

• describe_current_box()

Variables

• box – The box that this level will work with.

• coordinates – The coordinates of the perspective.

• bearing – The direction the perspective is facing.

• current_box – The most recently walked over box.

If you don’t set this attribute when creating the instance, then the first time the player moves
using the move() method, the name of the box they are standing on will be spoken.

• reverb – An optional reverb to play sounds through.

You shouldn’t write to this property, instead use the connect_reverb() method to set
a new reverb, and disconnect_reverb() to clear.

activate(door_distance: float = 2.0)→ Callable[[], None]
Return a function that can be call when the enter key is pressed.

First we check if the current box is a portal. If it is, then we call handle_portal().

If it is not, we check to see if there is a door close enough to be opened or closed. If there is, then we call
handle_door() on it.

If none of this works, and there is a current box, dispatch the on_activate() event to let the box do
its own thing.

Parameters door_distance – How close doors have to be for this method to open or close
them.

56 Chapter 9. earwax

Earwax

add_box(box: earwax.mapping.box.Box[typing.Any][Any])→ None
Add a box to self.boxes.

Parameters box – The box to add.

add_boxes(boxes: Iterable[earwax.mapping.box.Box])→ None
Add multiple boxes with one call.

Parameters boxes – An iterable for boxes to add.

add_default_actions()→ None
Add some default actions.

This method adds the following actions:

• Move forward: W

• Turn 180 degrees: S

• Turn 45 degrees left: A

• Turn 45 degrees right: D

• Show coordinates: C

• Show the facing direction: F

• Describe current box: X

• Speak nearest door: Z

• Activate nearby objects: Return

calculate_coordinates(distance: float, bearing: int)→ Tuple[float, float]
Calculate coordinates at the given distance in the given direction.

Used by move() to calculate new coordinates.

Override this method if you want to change the algorithm used to calculate the target coordinates.

Please bear in mind however, that the coordinates this method returns should always be 2d.

Parameters

• distance – The distance which should be used.

• bearing – The bearing the new coordinates are in.

This value may not be the same as self.bearing.

collide(box: earwax.mapping.box.Box[typing.Any][Any], coordinates: earwax.point.Point)→ None
Handle collitions.

Called to run collision code on a box.

Parameters

• box – The box the player collided with.

• coordinates – The coordinates the player was trying to reach.

describe_current_box()→ None
Describe the current box.

get_angle_between(other: earwax.point.Point)→ float
Return the angle between the perspective and the other coordinates.

This function takes into account self.bearing.

9.1. earwax package 57

Earwax

Parameters other – The target coordinates.

get_boxes(t: Any)→ List[earwax.mapping.box.Box]
Return a list of boxes of the current type.

If no boxes are found, an empty list is returned.

Parameters t – The type of the boxes.

get_containing_box(coordinates: earwax.point.Point)→ Optional[earwax.mapping.box.Box]
Return the box that spans the given coordinates.

If no box is found, None will be returned.

This method scans self.boxes using the sort_boxes() method.

Parameters coordinates – The coordinates the box should span.

get_current_box()→ Optional[earwax.mapping.box.Box]
Get the box that lies at the current coordinates.

handle_box(box: earwax.mapping.box.Box[typing.Any][Any])→ None
Handle a bulk standard box.

The coordinates have already been set, and the on_footstep event dispatched, so all that is left is to
speak the name of the new box, if it is different to the last one, update self.reverb if necessary, and
store the new box.

move(distance: float = 1.0, vertical: Optional[float] = None, bearing: Optional[int] = None) →
Callable[[], None]

Return a callable that allows the player to move on the map.

If the move is successful (I.E.: There is a box at the destination coordinates), the on_move() event is
dispatched.

If not, then on_move_fail() is dispatched.

Parameters

• distance – The distance to move.

• vertical – An optional adjustment to be added to the vertical position.

• bearing – An optional direction to move in.

If this value is None, then self.bearing will be used.

nearest_by_type(start: earwax.point.Point, data_type: Any, same_z: bool = True) → Op-
tional[earwax.mapping.box_level.NearestBox]

Get the nearest box to the given point by type.

If no boxes of the given type are found, None will be returned.

Parameters

• start – The point to start looking from.

• data_type – The type of box data to search for.

• same_z – If this value is True, only boxes on the same z axis will be considered.

nearest_door(start: earwax.point.Point, same_z: bool = True) → Op-
tional[earwax.mapping.box_level.NearestBox]

Get the nearest door.

Iterates over all doors, and returned the nearest one.

Parameters

58 Chapter 9. earwax

Earwax

• start – The coordinates to start from.

• same_z – If True, then doors on different levels will not be considered.

nearest_portal(start: earwax.point.Point, same_z: bool = True) → Op-
tional[earwax.mapping.box_level.NearestBox]

Return the nearest portal.

Parameters

• start – The coordinates to start from.

• same_z – If True, then portals on different levels will not be considered.

on_move_fail(distance: float, vertical: Optional[float], bearing: int, coordinates: ear-
wax.point.Point)→ None

Handle a move failure.

An event that will be dispatched when the move() action has been used, but no move was performed.

Parameters

• distance – The distance value that was passed to move().

• vertical – The vertical value that was passed to move.

• bearing – The bearing argument that was passed to move, or self.bearing.

on_move_success()→ None
Handle a successful move.

An event that will be dispatched when the move() action is used.

By default, this method plays the correct footstep sound.

on_push()→ None
Set listener orientation, and start ambiances and tracks.

on_turn()→ None
Handle turning.

An event that will dispatched when the turn() action is used.

register_box(box: earwax.mapping.box.Box)→ None
Register a box that is already in the boxes list.

Parameters box – The box to register.

remove_box(box: earwax.mapping.box.Box[typing.Any][Any])→ None
Remove a box from self.boxes.

Parameters box – The box to remove.

set_bearing(angle: int)→ None
Set the direction of travel and the listener’s orientation.

Parameters angle – The bearing (in degrees).

set_coordinates(p: earwax.point.Point)→ None
Set the current coordinates.

Also set listener position.

Parameters p – The new point to assign to self.coordinates.

show_coordinates(include_z: bool = False)→ Callable[[], None]
Speak the current coordinates.

9.1. earwax package 59

Earwax

show_facing(include_angle: bool = True)→ Callable[[], None]
Return a function that will let you see the current bearing as text.

For example:

l = BoxLevel(...)
l.action('Show facing', symbol=key.F)(l.show_facing())

Parameters include_angle – If True, then the actual angle will be shown along with the
direction name.

show_nearest_door(max_distance: Optional[float] = None)→ Callable[[], None]
Return a callable that will speak the position of the nearest door.

Parameters max_distance – The maximum distance between the current coordinates and
the nearest door where the door will still be reported.

If this value is None, then any door will be reported.

sort_boxes()→ List[earwax.mapping.box.Box]
Return children sorted by area.

turn(amount: int)→ Callable[[], None]
Return a turn function.

Return a function that will turn the perspective by the given amount and dispatch the on_turn event.

For example:

l = BoxLevel(...)
l.action('Turn right', symbol=key.D)(l.turn(45))
l.action('Turn left', symbol=key.A)(l.turn(-45))

The resulting angle will always be in the range 0-359.

Parameters amount – The amount to turn by.

Positive numbers turn clockwise, while negative numbers turn anticlockwise.

walls_between(end: earwax.point.Point, start: Optional[earwax.point.Point] = None)→ int
Return the number of walls between two points.

Parameters

• end – The target coordinates.

• start – The coordinates to start at.

If this value is None, then the current coordinates will be used.

class earwax.mapping.CurrentBox(coordinates: earwax.point.Point, box: ear-
wax.mapping.box.Box[typing.Any][Any])

Bases: object

Store a reference to the current box.

This class stores the position too, so that caching can be performed.

Variables

• coordinates – The coordinates that were last checked.

• box – The last current box.

60 Chapter 9. earwax

Earwax

class earwax.mapping.NearestBox(box: earwax.mapping.box.Box, coordinates: ear-
wax.point.Point, distance: float)

Bases: object

A reference to the nearest box.

Variables

• box – The box that was found.

• coordinates – The nearest coordinates to the ones specified.

• distance – The distance between the supplied coordinates, and coordinates.

class earwax.mapping.Door(open: bool = True, closed_sound: Optional[pathlib.Path] = None,
open_sound: Optional[pathlib.Path] = None, close_sound: Op-
tional[pathlib.Path] = None, close_after: Union[float, Tuple[float,
float], None] = None, can_open: Optional[Callable[[], bool]] = None,
can_close: Optional[Callable[[], bool]] = None)

Bases: object

An object that can be added to a box to optionally block travel.

Doors can currently either be open or closed. When opened, they can optionally close after a specified time:

Door() # Standard open door.
Door(open=False) # Closed door.
Door(close_after=5.0) # Will automatically close after 5 seconds.
A door that will automatically close between 5 and 10 seconds after
it has been opened:
Door(close_after=(5.0, 10.0)

Variables

• open – Whether or not this box can be walked on.

If this value is False, then the player will hear closed_sound when trying to walk on
this box.

If this value is True, the player will be able to enter the box as normal.

• closed_sound – The sound that will be heard if open is False.

• open_sound – The sound that will be heard when opening this door.

• close_sound – The sound that will be heard when closing this door.

• close_after – When (if ever) to close the door after it has been opened.

This attribute supports 3 possible values:

– None: The door will not close on its own.

– A tuple of two positive floats a and b: A random number between a and b will be
selected, and the door will automatically close after that time.

– A float: The exact time the door will automatically close after.

• can_open – An optional method which will be used to decide whether or not this door can
be opened at this time.

This method must return True or False, and must handle any messages which should be
sent to the player.

9.1. earwax package 61

Earwax

• can_close – An optional method which will be used to decide whether or not this door
can be closed at this time.

This method must return True or False, and must handle any messages which should be
sent to the player.

class earwax.mapping.MapEditor(game: Game, boxes: List[earwax.mapping.box.Box[typing.Any][Any]]
= NOTHING, coordinates: earwax.point.Point =
NOTHING, bearing: int = 0, current_box: Op-
tional[earwax.mapping.box_level.CurrentBox] = None,
filename: Optional[pathlib.Path] = None, context: ear-
wax.mapping.map_editor.MapEditorContext = NOTHING)

Bases: earwax.mapping.box_level.BoxLevel

A level which can be used for editing maps.

When this level talks about a map, it talks about a earwax.mapping.map_editor.LevelMap instance.

box_menu(box: earwax.mapping.map_editor.MapEditorBox)→ None
Push a menu to configure the provided box.

box_sound(template: earwax.mapping.map_editor.BoxTemplate, name: str) → Callable[[], Genera-
tor[None, None, None]]

Push an editor for setting the given sound.

Parameters

• template – The template to modify.

• name – The name of the sound to modify.

box_sounds()→ None
Push a menu for configuring sounds.

boxes_menu()→ None
Push a menu to select a box to configure.

If there is only 1 box, it will not be shown.

complain_box()→ None
Complain about there being no box.

create_box()→ None
Create a box, then call box_menu().

get_default_context()→ earwax.mapping.map_editor.MapEditorContext
Return a suitable context.

id_box()→ Generator[None, None, None]
Change the ID for the current box.

label_box()→ Generator[None, None, None]
Rename the current box.

on_move_fail(distance: float, vertical: Optional[float], bearing: int, coordinates: ear-
wax.point.Point)→ None

Tell the user their move failed.

point_menu(template: earwax.mapping.map_editor.BoxTemplate, point: ear-
wax.mapping.map_editor.BoxPoint)→ Callable[[], None]

Push a menu for configuring individual points.

points_menu()→ None
Push a menu for moving the current box.

62 Chapter 9. earwax

Earwax

rename_box()→ Generator[None, None, None]
Rename the current box.

save()→ None
Save the map level.

class earwax.mapping.MapEditorContext(level: MapEditor, level_map: ear-
wax.mapping.map_editor.LevelMap, template_ids:
Dict[str, earwax.mapping.map_editor.BoxTemplate]
= NOTHING, box_ids: Dict[str, ear-
wax.mapping.box.Box[str][str]] = NOTHING)

Bases: object

A context to hold map information.

This class acts as an interface between a LevelMap instance, and a MapEditor instance.

add_template(template: earwax.mapping.map_editor.BoxTemplate, box: Op-
tional[earwax.mapping.map_editor.MapEditorBox] = None)→ None

Add a template to this context.

This method will add the given template to its box_template_ids dictionary.

Parameters template – The template to add.

reload_template(template: earwax.mapping.map_editor.BoxTemplate)→ None
Reload the given template.

This method recreates the box associated with the given template.

Parameters template – The template to reload.

to_box(template: earwax.mapping.map_editor.BoxTemplate) → ear-
wax.mapping.map_editor.MapEditorBox

Return a box from a template.

Parameters template – The template to convert.

to_point(data: earwax.mapping.map_editor.BoxPoint)→ earwax.point.Point
Return a point from the given data.

Parameters data – The BoxPoint to load the point from.

class earwax.mapping.Portal(level: BoxLevel, coordinates: earwax.point.Point, bearing: Op-
tional[int] = None, enter_sound: Optional[pathlib.Path] = None,
exit_sound: Optional[pathlib.Path] = None, can_use: Op-
tional[Callable[[], bool]] = None)

Bases: earwax.mixins.RegisterEventMixin

A portal to another map.

An object that can be added to a earwax.Box to make a link between two maps.

This class implements pyglet.event.EventDispatcher, so events can be registered and dispatched on
it.

The currently-registered events are:

• on_enter()

• on_exit()

Variables

• level – The destination level.

9.1. earwax package 63

Earwax

• coordinates – The exit coordinates.

• bearing – If this value is None, then it will be used for the player’s bearing after this
portal is used. Otherwise, the bearing from the old level will be used.

• enter_sound – The sound that should play when entering this portal.

This sound is probably only used when an NPC uses the portal.

• exit_sound – The sound that should play when exiting this portal.

This is the sound that the player will hear when using the portal.

• can_use – An optional method which will be called to ensure that this portal can be used
at this time.

This function should return True or False, and should handle any messages which should
be sent to the player.

on_enter()→ None
Handle a player entering this portal.

on_exit()→ None
Handle a player exiting this portal.

earwax.menus package

Submodules

earwax.menus.action_menu module

Provides the ActionMenu class.

class earwax.menus.action_menu.ActionMenu(game: Game, title: Union[str, Ti-
tleFunction], dismissible: bool
= True, item_select_sound_path:
Optional[pathlib.Path] = None,
item_activate_sound_path: Op-
tional[pathlib.Path] = None, position:
int = -1, search_timeout: float = 0.5,
search_time: float = 0.0, input_mode: Op-
tional[earwax.input_modes.InputModes] =
NOTHING, all_triggers_label: Optional[str] =
’<< Show all triggers >>’)

Bases: earwax.menus.menu.Menu

A menu to show a list of actions and their associated triggers.

You can use this class with any game, like so:

from earwax import Game, Level, ActionMenu
from pyglet.window import Window, key
w = Window(caption='Test Game')
g = Game()
l = Level()
@l.action('Show actions', symbol=key.SLASH, modifiers=key.MOD_SHIFT)
def actions_menu():

'''Show an actions menu.'''

(continues on next page)

64 Chapter 9. earwax

Earwax

(continued from previous page)

a = ActionMenu(g, 'Actions')
g.push_level(a)

g.push_level(l)
g.run(w)

Now, if you press shift and slash (a question mark on english keyboards), you will get an action menu.

This code can be shortened to:

@l.action('Show actions', symbol=key.SLASH, modifiers=key.MOD_SHIFT)
def actions_menu():

'''Show an actions menu.'''
game.push_action_menu()

If you want to override how triggers appear in the menu, then you can override symbol_to_string() and
mouse_to_string().

Variables

• input_mode – The input mode this menu will show actions for.

• all_triggers_label – The label for the “All triggers” entry.

If this value is None no such entry will be shown.

action_menu(action: earwax.action.Action)→ Callable[[], Optional[Generator[None, None, None]]]
Show a submenu of triggers.

Override this method to change how the submenu for actions is displayed.

Parameters action – The action to generate the menu for.

action_title(action: earwax.action.Action, triggers: List[str])→ str
Return a suitable title for the given action.

This method is used when building the menu when input_mode is not None.

Parameters

• action – The action whose name will be used.

• triggers – A list of triggers gleaned from the given action.

get_default_input_mode()→ earwax.input_modes.InputModes
Get the default input mode.

handle_action(action: earwax.action.Action) → Callable[[], Optional[Generator[None, None,
None]]]

Handle an action.

This method is used as the menu handler that is triggered when you select a trigger to activate the current
action.

Parameters action – The action to run.

hat_direction_to_string(direction: Tuple[int, int])→ str
Return the given hat direction as a string.

mouse_to_string(action: earwax.action.Action)→ str
Describe how to trigger the given action with the mouse.

Returns a string representing the mouse button and modifiers needed to trigger the provided action.

9.1. earwax package 65

Earwax

You must be certain that action.mouse_button is not None.

Override this method to change how mouse triggers appear.

Parameters action – The action whose mouse_button attribute this method will be work-
ing on.

show_all()→ None
Show all triggers.

symbol_to_string(action: earwax.action.Action)→ str
Describe how to trigger the given action with the keyboard.

Returns a string representing the symbol and modifiers needed to trigger the provided action.

You must be certain that action.symbol is not None.

Override this method to change how symbol triggers appear.

Parameters action – The action whose symbol attribute this method will be working on.

earwax.menus.config_menu module

Provides the ConfigMenu class,.

class earwax.menus.config_menu.ConfigMenu(game: Game, title: Union[str, Ti-
tleFunction], dismissible: bool
= True, item_select_sound_path:
Optional[pathlib.Path] = None,
item_activate_sound_path: Op-
tional[pathlib.Path] = None, position: int
= -1, search_timeout: float = 0.5, search_time:
float = 0.0, config: earwax.config.Config =
NOTHING)

Bases: earwax.menus.menu.Menu

A menu that allows the user to set values on configuration sections.

If an option is present with a type the menu doesn’t know how to handle, earwax.UnknownTypeError will
be raised.

Variables

• config – The configuration section this menu will configure.

• type_handlers – Functions to handle the types this menu knows about.

New types can be handled with the type_handler() method.

activate_handler(handler: earwax.menus.config_menu.TypeHandler, option: ear-
wax.config.ConfigValue) → Callable[[], Optional[Generator[None, None,
None]]]

Activates the given handler with the given configuration value.

Used by the option_menu() method when building menus.

Parameters

• handler – The TypeHandler instance that should be activated.

• option – The ConfigValue instance the handler should work with.

66 Chapter 9. earwax

Earwax

clear_value(option: earwax.config.ConfigValue)→ None
Clear the value.

Sets option.value to None.

Used by the default TypeHandler that handles nullable values.

Parameters option – The ConfigValue instance whose value should be set to None.

earwax_config()→ earwax.config.Config
Return the main earwax configuration.

get_option_name(option: earwax.config.ConfigValue, name: str)→ str
Get the name for the given option.

The provided name argument will be the attribute name, so should only be used if the option has no
__section_name__ attribute.

Parameters

• option – The ConfigValue instance whose name should be returned.

• name – The name of the attribute that holds the option.

get_subsection_name(subsection: earwax.config.Config, name: str)→ str
Get the name for the given subsection.

The provided name argument will be the attribute name, so should only be used if the subsection has no
__section_name__ attribute.

Parameters

• subsection – The Config instance whose name should be returned.

• name – The name of the attribute that holds the subsection.

handle_bool(option: earwax.config.ConfigValue)→ None
Toggle a boolean value.

Used by the default TypeHandler that handles boolean values.

Parameters option – The ConfigValue instance to work on.

handle_float(option: earwax.config.ConfigValue)→ Generator[None, None, None]
Allow editing floats.

Used by the default TypeHandler that handles float values.

Parameters option – The ConfigValue instance to work on.

handle_int(option: earwax.config.ConfigValue)→ Generator[None, None, None]
Allow editing integers.

Used by the default TypeHandler that handles integer values.

Parameters option – The ConfigValue instance to work on.

handle_path(option: earwax.config.ConfigValue)→ Generator[None, None, None]
Allow selecting files and folders.

Used by the default TypeHandler that handles pathlib.Path values.

Parameters option – The ConfigValue instance to work on.

handle_string(option: earwax.config.ConfigValue)→ Generator[None, None, None]
Allow editing strings.

Used by the default TypeHandler that handles string values.

9.1. earwax package 67

Earwax

Parameters option – The ConfigValue instance to work on.

option_menu(option: earwax.config.ConfigValue, name: str) → Callable[[], Generator[None, None,
None]]

Add a menu for the given option.

If the type of the provided option is a Union type (like Optional[str]), then an entry for editing each
type will be added to the menu. Otherwise, there will be only one entry.

The only special case is when the type is a tuple of values. If this happens, the menu will instead be
populated with a list of entries corrisponding to the values of the tuple.

At the end of the menu, there will be an option to restore the default value.

Parameters

• option – The ConfigValue instance to generate a menu for.

• name – The proper name of the given option, as returned by get_option_name().

set_value(option: earwax.config.ConfigValue, value: Any, message: str = ’Done.’) → Callable[[],
None]

Set a value.

Returns a callable that can be used to set the value of the provided option to the provided value.

This method returns a callable because it is used extensively by option_menu(), and a bunch of lamb-
das becomes less readable. Plus, Mypy complains about them.

Parameters

• option – The ConfigValue instance to work on.

• value – The value to set option.value to.

• message – The message to be spoken after setting the value.

subsection_menu(subsection: earwax.config.Config, name: str) → Callable[[], Generator[None,
None, None]]

Add a menu for the given subsection.

By default, creates a new earwax.ConfigMenu instance, and returns a function that - when called -
will push it onto the stack.

Parameters

• subsection – The Config instance to create a menu for.

• name – The proper name of the subsection, returned by get_subsection_name().

type_handler(type_: object, title: Callable[[earwax.config.ConfigValue, str], str]) →
Callable[[Callable[[earwax.config.ConfigValue], Optional[Generator[None, None,
None]]]], Callable[[earwax.config.ConfigValue], Optional[Generator[None, None,
None]]]]

Add a type handler.

Decorate a function to be used as a type handler:

from datetime import datetime, timedelta
from earwax import ConfigMenu, tts

m = ConfigMenu(pretend_config, 'Options', game)

@m.type_handler(datetime, lambda option, name: 'Add a week')
def add_week(option):

(continues on next page)

68 Chapter 9. earwax

Earwax

(continued from previous page)

'''Add a week to the current value.'''
option.value += timedelta(days=7)
self.game.output('Added a week.')
m.game.pop_level()

Handlers can do anything menu item functions can do, including creating more menus, and yielding.

Parameters

• type – The type this handler should be registered for.

• title – A function which will return the title for the menu item for this handler.

class earwax.menus.config_menu.TypeHandler(title: Callable[[earwax.config.ConfigValue,
str], str], func:
Callable[[earwax.config.ConfigValue], Op-
tional[Generator[None, None, None]]])

Bases: object

A type handler for use with ConfigMenu instances.

Variables

• title – A function that will return a string which can be used as the title for the menu item
generated by this handler.

• func – The function that will be called when this handler is required.

exception earwax.menus.config_menu.UnknownTypeError
Bases: Exception

An unknown type was encountered.

An exception which will be thrown if a ConfigMenu instance doesn’t know how to handle the given type.

earwax.menus.file_menu module

Provides the FileMenu class.

class earwax.menus.file_menu.FileMenu(game: Game, title: Union[str, Title-
Function], dismissible: bool = True,
item_select_sound_path: Optional[pathlib.Path]
= None, item_activate_sound_path: Op-
tional[pathlib.Path] = None, position: int =
-1, search_timeout: float = 0.5, search_time:
float = 0.0, path: pathlib.Path = NOTHING,
func: Callable[[Optional[pathlib.Path]], Op-
tional[Generator[None, None, None]]] = <built-in
function print>, root: Optional[pathlib.Path] = None,
empty_label: Optional[str] = None, directory_label:
Optional[str] = None, show_directories: bool = True,
show_files: bool = True, up_label: str = ’..’)

Bases: earwax.menus.menu.Menu

A menu for selecting a file.

File menus can be used as follows:

9.1. earwax package 69

Earwax

from pathlib import Path
from earwax import Game, Level, FileMenu, tts
from pyglet.window import key, Window
w = Window(caption='Test Game')
g = Game()
l = Level(g)
@l.action('Show file menu', symbol=key.F)
def file_menu():

'''Show a file menu.'''
def inner(p):

tts.speak(str(p))
g.pop_level()

f = FileMenu(g, 'File Menu', Path.cwd(), inner)
g.push_level(f)

g.push_level(l)
g.run(w)

Variables

• path – The path this menu will start at.

• func – The function to run with the resulting file or directory.

• root – The root directory which this menu will be chrooted to.

• empty_label – The label given to an entry which will allow this menu to return None as
a result.

If this label is None (the default), then then no such option will be available.

• directory_label – The label given to an entry which will allow a directory - in addition
to files - to be selected.

If this argument is None (the default), then no such option will be available.

If you only want directories to be selected, then pass show_files=False to the constructor.

• show_directories – Whether or not to show directories in the list.

• show_files – Whether or not to include files in the list.

• up_label – The label given to the entry to go up in the directory tree.

navigate_to(path: pathlib.Path)→ Callable[[], None]
Navigate to a different path.

Instead of completely replacing the menu, just change the path, and re- use this instance.

rebuild_menu()→ None
Rebuild the menu.

This method will be called once after initialisation, and every time the directory is changed by the
navigate_to() method.

select_item(path: Optional[pathlib.Path])→ Callable[[], Optional[Generator[None, None, None]]]
Select an item.

Used as the menu handler in place of a lambda.

Parameters path – The path that has been selected. Could be a file or a directory.

70 Chapter 9. earwax

Earwax

earwax.menus.menu module

Provides the Menu class.

class earwax.menus.menu.Menu(game: Game, title: Union[str, TitleFunction], dismissible: bool
= True, item_select_sound_path: Optional[pathlib.Path] = None,
item_activate_sound_path: Optional[pathlib.Path] = None, posi-
tion: int = -1, search_timeout: float = 0.5, search_time: float =
0.0)

Bases: earwax.level.Level, earwax.mixins.TitleMixin, earwax.mixins.
DismissibleMixin

A menu of MenuItem instances.

Menus hold multiple menu items which can be activated using actions.

As menus are simply Level subclasses, they can be pushed, popped, and replaced.

To add items to a menu, you can either use the item() decorator, or the add_item() function.

Here is an example of both methods:

from earwax import Game, Level, Menu
from pyglet.window import key, Window
w = Window(caption='Test Game')
g = Game()
l = Level()
@l.action('Show menu', symbol=key.M)
def menu():

'''Show a menu with 2 items.'''
m = Menu(g, 'Menu')
@m.item(title='First Item')
def first_item():

g.output('First menu item.')
g.pop_level()

def second_item():
g.output('Second menu item.')
g.pop_level()

m.add_item(second_item, title='Second Item')
g.push_level(m)

g.push_level(l)
g.run(w)

To override the default actions that are added to a menu, subclass earwax.Menu, and override
__attrs_post_init__().

Variables

• item_sound_path – The default sound to play when moving through the menu.

If the selected item’s sound_path attribute is not None, then that value takes precedence.

• items – The list of MenuItem instances for this menu.

• position – The user’s position in this menu.

• search_timeout – The maximum time between menu searches.

• search_time – The time the last menu search was performed.

• search_string – The current menu search search string.

9.1. earwax package 71

Earwax

activate()→ Optional[Generator[None, None, None]]
Activate the currently focused menu item.

Usually triggered by the enter key.

add_item(func: Callable[[], Optional[Generator[None, None, None]]], **kwargs) → ear-
wax.menus.menu_item.MenuItem

Add an item to this menu.

For example:

m = Menu(game, 'Example Menu')
def f():

game.output('Menu item activated.')
m.add_item(f, title='Test Item')
m.add_item(f, sound_path=Path('sound.wav'))

If you would rather use decorators, use the item() method instead.

Parameters

• func – The function which will be called when the menu item is selected.

• kwargs – Extra arguments to be passed to the constructor of earwax.MenuItem.

add_submenu(menu: earwax.menus.menu.Menu, replace: bool, **kwargs) → ear-
wax.menus.menu_item.MenuItem

Add a submenu to this menu.

Parameters

• menu – The menu to show when the resulting item is activated.

• replace – If True, then the new menu will replace this one in the levels stack.

• kwargs – The additional arguments to pass to add_item().

current_item
Return the currently selected menu item.

If position is -1, return None.

end()→ None
Move to the end of a menu.

Usually triggered by the end key.

classmethod from_credits(game: Game, credits: List[earwax.credit.Credit], title: str = ’Game
Credits’)→ Menu

Return a menu for showing credits.

Parameters

• game – The game to use.

• credits – The credits to show.

• title – The title of the new menu.

home()→ None
Move to the start of a menu.

Usually triggered by the home key.

item(**kwargs) → Callable[[Callable[[], Optional[Generator[None, None, None]]]], ear-
wax.menus.menu_item.MenuItem]

Decorate a function to be used as a menu item.

72 Chapter 9. earwax

Earwax

For example:

@menu.item(title='Title')
def func():

pass

@menu.item(sound_path=Path('sound.wav'))
def item_with_sound():

pass

If you don’t want to use a decorator, you can use the add_item() method instead.

Parameters kwargs – Extra arguments to be passed to the constructor of earwax.
MenuItem.

make_sound(item: earwax.menus.menu_item.MenuItem, path: pathlib.Path)→ earwax.sound.Sound
Return a sound object.

Parameters

• item – The menu item to make the sound for.

This value is probably current_item.

• path – The path to load the sound from.

This value will have been determined by show_selection(), and may have been
loaded from the menu item itself, or the main earwax configuration.

move_down()→ None
Move down in this menu.

Usually triggered by the down arrow key.

move_up()→ None
Move up in this menu.

Usually triggered by the up arrow key.

on_pop()→ None
Destroy select_sound if necessary.

on_push()→ None
Handle this menu being pushed.

This method is called when this object has been pushed onto a Game instance.

By default, show the current selection. That will be the same as speaking the title, unless self.
position has been set to something other than -1..

on_reveal()→ None
Show selection again.

on_text(text: str)→ None
Handle sent text.

By default, performs a search of this menu.

Parameters text – The text that has been sent.

show_selection()→ None
Speak the menu item at the current position.

If self.position is -1, this method speaks self.title.

This function performs no error checking, so it will happily throw errors if position is something stupid.

9.1. earwax package 73

Earwax

classmethod yes_no(game: Game, yes_action: Callable[[], Optional[Generator[None, None,
None]]], no_action: Callable[[], Optional[Generator[None, None, None]]],
title: str = ’Are you sure?’, yes_label: str = ’Yes’, no_label: str = ’No’,
**kwargs)→ Menu

Create and return a yes no menu.

Parameters

• game – The game to bind the new menu to.

• yes_action – The function to be called if the yes item is selected.

• no_action – The action to be performed if no is selected.

• title – The title of the menu.

• yes_label – The label of the yes item.

• no_label – The title of the no label.

• kwargs – Extra keyword arguments to be passed to the Menu constructor.

earwax.menus.menu_item module

Provides the MenuItem class.

class earwax.menus.menu_item.MenuItem(func: Callable[[], Optional[Generator[None, None,
None]]], title: Union[str, TitleFunction, None]
= None, select_sound_path: Optional[pathlib.Path]
= None, loop_select_sound: bool = False, acti-
vate_sound_path: Optional[pathlib.Path] = None)

Bases: earwax.mixins.RegisterEventMixin

An item in a Menu.

This class is rarely used directly, instead earwax.menu.Menu.add_item() or earwax.menu.Menu.
item() can be used to return an instance.

Variables

• func – The function which will be called when this item is activated.

• title – The title of this menu item.

If this value is a callable, it should return a string which will be used as the title.

• select_sound_path – The path to a sound which should play when this menu item is
selected.

If this value is None (the default), then no sound will be heard unless the containing menu
has its item_select_sound_path attribute set to something that is not None, or
earwax.EarwaxConfig.menus.default_item_select_sound is not None.

• activate_sound_path – The path to a sound which should play when this menu item
is activated.

If this value is None (the default), then no sound will be heard unless the containing menu
has its item_activate_sound_path attribute set to something that is not None, or
earwax.EarwaxConfig.menus.default_item_select_sound is not None.

get_title()→ Optional[str]
Return the proper title of this object.

If self.title is a callable, its return value will be returned.

74 Chapter 9. earwax

Earwax

on_selected()→ None
Handle this menu item being selected.

earwax.menus.reverb_editor module

Provides the ReverbEditor class.

class earwax.menus.reverb_editor.ReverbEditor(game: Game, title: Union[str, Ti-
tleFunction], dismissible: bool
= True, item_select_sound_path:
Optional[pathlib.Path] = None,
item_activate_sound_path: Op-
tional[pathlib.Path] = None, po-
sition: int = -1, search_timeout:
float = 0.5, search_time: float
= 0.0, reverb: object = NOTH-
ING, settings: earwax.reverb.Reverb
= NOTHING, setting_items:
List[earwax.menus.menu_item.MenuItem]
= NOTHING)

Bases: earwax.menus.menu.Menu

A menu for editing reverbs.

adjust_value(amount: earwax.menus.reverb_editor.ValueAdjustments)→ Callable[[], None]
Restore the current menu item to the default.

edit_value(setting: earwax.menus.reverb_editor.ReverbSetting, value: float)→ Callable[[], Genera-
tor[None, None, None]]

Edit the given value.

get_default_reverb()→ object
Raise an error.

get_default_settings()→ earwax.reverb.Reverb
Raise an error.

reset()→ None
Reload this menu.

set_value(setting: earwax.menus.reverb_editor.ReverbSetting, value: float)→ None
Set the value.

class earwax.menus.reverb_editor.ReverbSetting(name: str, description: str, min: float,
max: float, default: float, increment:
float = 0.05)

Bases: object

A setting for reverb.

class earwax.menus.reverb_editor.ValueAdjustments
Bases: enum.Enum

Possible value adjustments for menu actions.

decrement = 1

default = 0

increment = 2

9.1. earwax package 75

Earwax

Module contents

Provides all menu-related classes.

By default:

• Menus are lists of items which can be traversed with the arrow keys, or by searching.

• The first item can be focussed with the home key.

• The last item can be focussed with the end key.

• The selected item can be activated with the enter key.

Optionally, menus can be dismissed with the escape key.

class earwax.menus.Menu(game: Game, title: Union[str, TitleFunction], dismissible: bool
= True, item_select_sound_path: Optional[pathlib.Path] = None,
item_activate_sound_path: Optional[pathlib.Path] = None, position: int
= -1, search_timeout: float = 0.5, search_time: float = 0.0)

Bases: earwax.level.Level, earwax.mixins.TitleMixin, earwax.mixins.
DismissibleMixin

A menu of MenuItem instances.

Menus hold multiple menu items which can be activated using actions.

As menus are simply Level subclasses, they can be pushed, popped, and replaced.

To add items to a menu, you can either use the item() decorator, or the add_item() function.

Here is an example of both methods:

from earwax import Game, Level, Menu
from pyglet.window import key, Window
w = Window(caption='Test Game')
g = Game()
l = Level()
@l.action('Show menu', symbol=key.M)
def menu():

'''Show a menu with 2 items.'''
m = Menu(g, 'Menu')
@m.item(title='First Item')
def first_item():

g.output('First menu item.')
g.pop_level()

def second_item():
g.output('Second menu item.')
g.pop_level()

m.add_item(second_item, title='Second Item')
g.push_level(m)

g.push_level(l)
g.run(w)

To override the default actions that are added to a menu, subclass earwax.Menu, and override
__attrs_post_init__().

Variables

• item_sound_path – The default sound to play when moving through the menu.

If the selected item’s sound_path attribute is not None, then that value takes precedence.

76 Chapter 9. earwax

Earwax

• items – The list of MenuItem instances for this menu.

• position – The user’s position in this menu.

• search_timeout – The maximum time between menu searches.

• search_time – The time the last menu search was performed.

• search_string – The current menu search search string.

activate()→ Optional[Generator[None, None, None]]
Activate the currently focused menu item.

Usually triggered by the enter key.

add_item(func: Callable[[], Optional[Generator[None, None, None]]], **kwargs) → ear-
wax.menus.menu_item.MenuItem

Add an item to this menu.

For example:

m = Menu(game, 'Example Menu')
def f():

game.output('Menu item activated.')
m.add_item(f, title='Test Item')
m.add_item(f, sound_path=Path('sound.wav'))

If you would rather use decorators, use the item() method instead.

Parameters

• func – The function which will be called when the menu item is selected.

• kwargs – Extra arguments to be passed to the constructor of earwax.MenuItem.

add_submenu(menu: earwax.menus.menu.Menu, replace: bool, **kwargs) → ear-
wax.menus.menu_item.MenuItem

Add a submenu to this menu.

Parameters

• menu – The menu to show when the resulting item is activated.

• replace – If True, then the new menu will replace this one in the levels stack.

• kwargs – The additional arguments to pass to add_item().

current_item
Return the currently selected menu item.

If position is -1, return None.

end()→ None
Move to the end of a menu.

Usually triggered by the end key.

classmethod from_credits(game: Game, credits: List[earwax.credit.Credit], title: str = ’Game
Credits’)→ Menu

Return a menu for showing credits.

Parameters

• game – The game to use.

• credits – The credits to show.

• title – The title of the new menu.

9.1. earwax package 77

Earwax

home()→ None
Move to the start of a menu.

Usually triggered by the home key.

item(**kwargs) → Callable[[Callable[[], Optional[Generator[None, None, None]]]], ear-
wax.menus.menu_item.MenuItem]

Decorate a function to be used as a menu item.

For example:

@menu.item(title='Title')
def func():

pass

@menu.item(sound_path=Path('sound.wav'))
def item_with_sound():

pass

If you don’t want to use a decorator, you can use the add_item() method instead.

Parameters kwargs – Extra arguments to be passed to the constructor of earwax.
MenuItem.

make_sound(item: earwax.menus.menu_item.MenuItem, path: pathlib.Path)→ earwax.sound.Sound
Return a sound object.

Parameters

• item – The menu item to make the sound for.

This value is probably current_item.

• path – The path to load the sound from.

This value will have been determined by show_selection(), and may have been
loaded from the menu item itself, or the main earwax configuration.

move_down()→ None
Move down in this menu.

Usually triggered by the down arrow key.

move_up()→ None
Move up in this menu.

Usually triggered by the up arrow key.

on_pop()→ None
Destroy select_sound if necessary.

on_push()→ None
Handle this menu being pushed.

This method is called when this object has been pushed onto a Game instance.

By default, show the current selection. That will be the same as speaking the title, unless self.
position has been set to something other than -1..

on_reveal()→ None
Show selection again.

on_text(text: str)→ None
Handle sent text.

78 Chapter 9. earwax

Earwax

By default, performs a search of this menu.

Parameters text – The text that has been sent.

show_selection()→ None
Speak the menu item at the current position.

If self.position is -1, this method speaks self.title.

This function performs no error checking, so it will happily throw errors if position is something stupid.

classmethod yes_no(game: Game, yes_action: Callable[[], Optional[Generator[None, None,
None]]], no_action: Callable[[], Optional[Generator[None, None, None]]],
title: str = ’Are you sure?’, yes_label: str = ’Yes’, no_label: str = ’No’,
**kwargs)→ Menu

Create and return a yes no menu.

Parameters

• game – The game to bind the new menu to.

• yes_action – The function to be called if the yes item is selected.

• no_action – The action to be performed if no is selected.

• title – The title of the menu.

• yes_label – The label of the yes item.

• no_label – The title of the no label.

• kwargs – Extra keyword arguments to be passed to the Menu constructor.

class earwax.menus.MenuItem(func: Callable[[], Optional[Generator[None, None, None]]], title:
Union[str, TitleFunction, None] = None, select_sound_path: Op-
tional[pathlib.Path] = None, loop_select_sound: bool = False, ac-
tivate_sound_path: Optional[pathlib.Path] = None)

Bases: earwax.mixins.RegisterEventMixin

An item in a Menu.

This class is rarely used directly, instead earwax.menu.Menu.add_item() or earwax.menu.Menu.
item() can be used to return an instance.

Variables

• func – The function which will be called when this item is activated.

• title – The title of this menu item.

If this value is a callable, it should return a string which will be used as the title.

• select_sound_path – The path to a sound which should play when this menu item is
selected.

If this value is None (the default), then no sound will be heard unless the containing menu
has its item_select_sound_path attribute set to something that is not None, or
earwax.EarwaxConfig.menus.default_item_select_sound is not None.

• activate_sound_path – The path to a sound which should play when this menu item
is activated.

If this value is None (the default), then no sound will be heard unless the containing menu
has its item_activate_sound_path attribute set to something that is not None, or
earwax.EarwaxConfig.menus.default_item_select_sound is not None.

9.1. earwax package 79

Earwax

get_title()→ Optional[str]
Return the proper title of this object.

If self.title is a callable, its return value will be returned.

on_selected()→ None
Handle this menu item being selected.

class earwax.menus.ActionMenu(game: Game, title: Union[str, TitleFunction], dismissible: bool
= True, item_select_sound_path: Optional[pathlib.Path] = None,
item_activate_sound_path: Optional[pathlib.Path] = None, posi-
tion: int = -1, search_timeout: float = 0.5, search_time: float
= 0.0, input_mode: Optional[earwax.input_modes.InputModes] =
NOTHING, all_triggers_label: Optional[str] = ’<< Show all trig-
gers >>’)

Bases: earwax.menus.menu.Menu

A menu to show a list of actions and their associated triggers.

You can use this class with any game, like so:

from earwax import Game, Level, ActionMenu
from pyglet.window import Window, key
w = Window(caption='Test Game')
g = Game()
l = Level()
@l.action('Show actions', symbol=key.SLASH, modifiers=key.MOD_SHIFT)
def actions_menu():

'''Show an actions menu.'''
a = ActionMenu(g, 'Actions')
g.push_level(a)

g.push_level(l)
g.run(w)

Now, if you press shift and slash (a question mark on english keyboards), you will get an action menu.

This code can be shortened to:

@l.action('Show actions', symbol=key.SLASH, modifiers=key.MOD_SHIFT)
def actions_menu():

'''Show an actions menu.'''
game.push_action_menu()

If you want to override how triggers appear in the menu, then you can override symbol_to_string() and
mouse_to_string().

Variables

• input_mode – The input mode this menu will show actions for.

• all_triggers_label – The label for the “All triggers” entry.

If this value is None no such entry will be shown.

action_menu(action: earwax.action.Action)→ Callable[[], Optional[Generator[None, None, None]]]
Show a submenu of triggers.

Override this method to change how the submenu for actions is displayed.

Parameters action – The action to generate the menu for.

80 Chapter 9. earwax

Earwax

action_title(action: earwax.action.Action, triggers: List[str])→ str
Return a suitable title for the given action.

This method is used when building the menu when input_mode is not None.

Parameters

• action – The action whose name will be used.

• triggers – A list of triggers gleaned from the given action.

get_default_input_mode()→ earwax.input_modes.InputModes
Get the default input mode.

handle_action(action: earwax.action.Action) → Callable[[], Optional[Generator[None, None,
None]]]

Handle an action.

This method is used as the menu handler that is triggered when you select a trigger to activate the current
action.

Parameters action – The action to run.

hat_direction_to_string(direction: Tuple[int, int])→ str
Return the given hat direction as a string.

mouse_to_string(action: earwax.action.Action)→ str
Describe how to trigger the given action with the mouse.

Returns a string representing the mouse button and modifiers needed to trigger the provided action.

You must be certain that action.mouse_button is not None.

Override this method to change how mouse triggers appear.

Parameters action – The action whose mouse_button attribute this method will be work-
ing on.

show_all()→ None
Show all triggers.

symbol_to_string(action: earwax.action.Action)→ str
Describe how to trigger the given action with the keyboard.

Returns a string representing the symbol and modifiers needed to trigger the provided action.

You must be certain that action.symbol is not None.

Override this method to change how symbol triggers appear.

Parameters action – The action whose symbol attribute this method will be working on.

class earwax.menus.FileMenu(game: Game, title: Union[str, TitleFunction], dismissible: bool
= True, item_select_sound_path: Optional[pathlib.Path] = None,
item_activate_sound_path: Optional[pathlib.Path] = None, position:
int = -1, search_timeout: float = 0.5, search_time: float = 0.0, path:
pathlib.Path = NOTHING, func: Callable[[Optional[pathlib.Path]],
Optional[Generator[None, None, None]]] = <built-in function
print>, root: Optional[pathlib.Path] = None, empty_label: Op-
tional[str] = None, directory_label: Optional[str] = None,
show_directories: bool = True, show_files: bool = True, up_label:
str = ’..’)

Bases: earwax.menus.menu.Menu

A menu for selecting a file.

9.1. earwax package 81

Earwax

File menus can be used as follows:

from pathlib import Path
from earwax import Game, Level, FileMenu, tts
from pyglet.window import key, Window
w = Window(caption='Test Game')
g = Game()
l = Level(g)
@l.action('Show file menu', symbol=key.F)
def file_menu():

'''Show a file menu.'''
def inner(p):

tts.speak(str(p))
g.pop_level()

f = FileMenu(g, 'File Menu', Path.cwd(), inner)
g.push_level(f)

g.push_level(l)
g.run(w)

Variables

• path – The path this menu will start at.

• func – The function to run with the resulting file or directory.

• root – The root directory which this menu will be chrooted to.

• empty_label – The label given to an entry which will allow this menu to return None as
a result.

If this label is None (the default), then then no such option will be available.

• directory_label – The label given to an entry which will allow a directory - in addition
to files - to be selected.

If this argument is None (the default), then no such option will be available.

If you only want directories to be selected, then pass show_files=False to the constructor.

• show_directories – Whether or not to show directories in the list.

• show_files – Whether or not to include files in the list.

• up_label – The label given to the entry to go up in the directory tree.

navigate_to(path: pathlib.Path)→ Callable[[], None]
Navigate to a different path.

Instead of completely replacing the menu, just change the path, and re- use this instance.

rebuild_menu()→ None
Rebuild the menu.

This method will be called once after initialisation, and every time the directory is changed by the
navigate_to() method.

select_item(path: Optional[pathlib.Path])→ Callable[[], Optional[Generator[None, None, None]]]
Select an item.

Used as the menu handler in place of a lambda.

Parameters path – The path that has been selected. Could be a file or a directory.

82 Chapter 9. earwax

Earwax

class earwax.menus.ConfigMenu(game: Game, title: Union[str, TitleFunction], dismissible: bool
= True, item_select_sound_path: Optional[pathlib.Path] = None,
item_activate_sound_path: Optional[pathlib.Path] = None, posi-
tion: int = -1, search_timeout: float = 0.5, search_time: float =
0.0, config: earwax.config.Config = NOTHING)

Bases: earwax.menus.menu.Menu

A menu that allows the user to set values on configuration sections.

If an option is present with a type the menu doesn’t know how to handle, earwax.UnknownTypeError will
be raised.

Variables

• config – The configuration section this menu will configure.

• type_handlers – Functions to handle the types this menu knows about.

New types can be handled with the type_handler() method.

activate_handler(handler: earwax.menus.config_menu.TypeHandler, option: ear-
wax.config.ConfigValue) → Callable[[], Optional[Generator[None, None,
None]]]

Activates the given handler with the given configuration value.

Used by the option_menu() method when building menus.

Parameters

• handler – The TypeHandler instance that should be activated.

• option – The ConfigValue instance the handler should work with.

clear_value(option: earwax.config.ConfigValue)→ None
Clear the value.

Sets option.value to None.

Used by the default TypeHandler that handles nullable values.

Parameters option – The ConfigValue instance whose value should be set to None.

earwax_config()→ earwax.config.Config
Return the main earwax configuration.

get_option_name(option: earwax.config.ConfigValue, name: str)→ str
Get the name for the given option.

The provided name argument will be the attribute name, so should only be used if the option has no
__section_name__ attribute.

Parameters

• option – The ConfigValue instance whose name should be returned.

• name – The name of the attribute that holds the option.

get_subsection_name(subsection: earwax.config.Config, name: str)→ str
Get the name for the given subsection.

The provided name argument will be the attribute name, so should only be used if the subsection has no
__section_name__ attribute.

Parameters

• subsection – The Config instance whose name should be returned.

9.1. earwax package 83

Earwax

• name – The name of the attribute that holds the subsection.

handle_bool(option: earwax.config.ConfigValue)→ None
Toggle a boolean value.

Used by the default TypeHandler that handles boolean values.

Parameters option – The ConfigValue instance to work on.

handle_float(option: earwax.config.ConfigValue)→ Generator[None, None, None]
Allow editing floats.

Used by the default TypeHandler that handles float values.

Parameters option – The ConfigValue instance to work on.

handle_int(option: earwax.config.ConfigValue)→ Generator[None, None, None]
Allow editing integers.

Used by the default TypeHandler that handles integer values.

Parameters option – The ConfigValue instance to work on.

handle_path(option: earwax.config.ConfigValue)→ Generator[None, None, None]
Allow selecting files and folders.

Used by the default TypeHandler that handles pathlib.Path values.

Parameters option – The ConfigValue instance to work on.

handle_string(option: earwax.config.ConfigValue)→ Generator[None, None, None]
Allow editing strings.

Used by the default TypeHandler that handles string values.

Parameters option – The ConfigValue instance to work on.

option_menu(option: earwax.config.ConfigValue, name: str) → Callable[[], Generator[None, None,
None]]

Add a menu for the given option.

If the type of the provided option is a Union type (like Optional[str]), then an entry for editing each
type will be added to the menu. Otherwise, there will be only one entry.

The only special case is when the type is a tuple of values. If this happens, the menu will instead be
populated with a list of entries corrisponding to the values of the tuple.

At the end of the menu, there will be an option to restore the default value.

Parameters

• option – The ConfigValue instance to generate a menu for.

• name – The proper name of the given option, as returned by get_option_name().

set_value(option: earwax.config.ConfigValue, value: Any, message: str = ’Done.’) → Callable[[],
None]

Set a value.

Returns a callable that can be used to set the value of the provided option to the provided value.

This method returns a callable because it is used extensively by option_menu(), and a bunch of lamb-
das becomes less readable. Plus, Mypy complains about them.

Parameters

• option – The ConfigValue instance to work on.

84 Chapter 9. earwax

Earwax

• value – The value to set option.value to.

• message – The message to be spoken after setting the value.

subsection_menu(subsection: earwax.config.Config, name: str) → Callable[[], Generator[None,
None, None]]

Add a menu for the given subsection.

By default, creates a new earwax.ConfigMenu instance, and returns a function that - when called -
will push it onto the stack.

Parameters

• subsection – The Config instance to create a menu for.

• name – The proper name of the subsection, returned by get_subsection_name().

type_handler(type_: object, title: Callable[[earwax.config.ConfigValue, str], str]) →
Callable[[Callable[[earwax.config.ConfigValue], Optional[Generator[None, None,
None]]]], Callable[[earwax.config.ConfigValue], Optional[Generator[None, None,
None]]]]

Add a type handler.

Decorate a function to be used as a type handler:

from datetime import datetime, timedelta
from earwax import ConfigMenu, tts

m = ConfigMenu(pretend_config, 'Options', game)

@m.type_handler(datetime, lambda option, name: 'Add a week')
def add_week(option):

'''Add a week to the current value.'''
option.value += timedelta(days=7)
self.game.output('Added a week.')
m.game.pop_level()

Handlers can do anything menu item functions can do, including creating more menus, and yielding.

Parameters

• type – The type this handler should be registered for.

• title – A function which will return the title for the menu item for this handler.

class earwax.menus.TypeHandler(title: Callable[[earwax.config.ConfigValue, str], str],
func: Callable[[earwax.config.ConfigValue], Op-
tional[Generator[None, None, None]]])

Bases: object

A type handler for use with ConfigMenu instances.

Variables

• title – A function that will return a string which can be used as the title for the menu item
generated by this handler.

• func – The function that will be called when this handler is required.

exception earwax.menus.UnknownTypeError
Bases: Exception

An unknown type was encountered.

An exception which will be thrown if a ConfigMenu instance doesn’t know how to handle the given type.

9.1. earwax package 85

Earwax

class earwax.menus.ReverbEditor(game: Game, title: Union[str, TitleFunction], dismissible:
bool = True, item_select_sound_path: Optional[pathlib.Path]
= None, item_activate_sound_path: Optional[pathlib.Path]
= None, position: int = -1, search_timeout: float = 0.5,
search_time: float = 0.0, reverb: object = NOTHING,
settings: earwax.reverb.Reverb = NOTHING, setting_items:
List[earwax.menus.menu_item.MenuItem] = NOTHING)

Bases: earwax.menus.menu.Menu

A menu for editing reverbs.

adjust_value(amount: earwax.menus.reverb_editor.ValueAdjustments)→ Callable[[], None]
Restore the current menu item to the default.

edit_value(setting: earwax.menus.reverb_editor.ReverbSetting, value: float)→ Callable[[], Genera-
tor[None, None, None]]

Edit the given value.

get_default_reverb()→ object
Raise an error.

get_default_settings()→ earwax.reverb.Reverb
Raise an error.

reset()→ None
Reload this menu.

set_value(setting: earwax.menus.reverb_editor.ReverbSetting, value: float)→ None
Set the value.

earwax.promises package

Submodules

earwax.promises.base module

Provides the base Promise class, and the PromisesStates enumeration.

class earwax.promises.base.Promise
Bases: typing.Generic, earwax.mixins.RegisterEventMixin

The base class for promises.

Instances of this class have a few possible states which are contained in the PromiseStates enumeration.

Variables state – The state this promise is in (see above).

cancel()→ None
Override to provide cancel functionality.

done(value: T)→ None
Finish up.

Dispatches the on_done() event with the given value, and set self.state to earwax.
PromiseStates.done.

Parameters value – The value that was returned from whatever function this promise had.

error(e: Exception)→ None
Handle an error.

This event dispatches the on_error() event with the passed exception.

86 Chapter 9. earwax

Earwax

Parameters e – The exception that was raised.

on_cancel()→ None
Handle cancellation.

This event is dispatched when this instance has its cancel() method called.

on_done(result: T)→ None
Handle return value.

This event is dispatched when this promise completes with no error.

Parameters result – The value returned by the function.

on_error(e: Exception)→ None
Handle an error.

This event is dispatched when this promise raises an error.

Parameters e – The exception that was raised.

on_finally()→ None
Handle this promise comise completing.

This event is dispatched when this promise completes, whether or not it raises an error.

run(*args, **kwargs)→ None
Start this promise running.

class earwax.promises.base.PromiseStates
Bases: enum.Enum

The possible states of earwax.Promise instances.

Variables

• not_ready – The promise has been created, but a function must still be added.

How this is done depends on how the promise subclass in question has been implemented,
and may not always be used.

• ready – The promise has been created, and a function registered. The run() method has
not yet been called.

• running – The promise’s run() method has been called, but the function has not yet
returned a value, or raised an error.

• done – The promise has finished, and there was no error. The on_done() and
on_finally() events have already been dispatched.

• error – The promise completed, but there was an error, which was handled by the
on_error() event.

The on_finally() event has been dispatched.

• cancelled – The promise has had its cancel() method called, and its on_cancel()
event has been dispatched.

cancelled = 5

done = 3

error = 4

not_ready = 0

ready = 1

9.1. earwax package 87

Earwax

running = 2

earwax.promises.staggered_promise module

Provides the StaggeredPromise class.

class earwax.promises.staggered_promise.StaggeredPromise(func: Callable[[...], Gen-
erator[float, None, T]])

Bases: earwax.promises.base.Promise

A promise that can suspend itself at will.

I found myself missing the MOO-style suspend() function, so thought I’d make the same capability available in
earwax:

@StaggeredPromise.decorate
def promise() -> StaggeredPromiseGeneratorType:

game.output('Hello.')
yield 2.0
game.output('World.')

promise.run()
game.run(window)

This class supports all the promise events found on earwax.Promise, and also has a on_next() event,
which will fire whenever a promise suspends:

@promise.event
def on_next(delay: float) -> None:

print(f'I waited {delay}.')

Variables

• func – The function to run.

• generator – The generator returned by self.func.

cancel()→ None
Cancel this promise.

Cancels self.generator, and sets the proper state.

classmethod decorate(func: Callable[[...], Generator[float, None, T]]) → ear-
wax.promises.staggered_promise.StaggeredPromise

Make an instance from a decorated function.

This function acts as a decorator method for returning earwax.StaggeredPromise instances.

Using this function seems to help mypy figure out what type your function is.

Parameters func – The function to decorate.

do_next(dt: Optional[float])→ None
Advance execution.

Calls next(self.generator), and then suspend for however long the function demands.

If StopIteration is raised, then the args from that exception are sent to the self.on_done event.

If any other exception is raised, then that exception is passed along to the self.on_error event.

88 Chapter 9. earwax

Earwax

Parameters dt – The time since the last run, as passed by pyglet.clock.
schedule_once.

If this is the first time this method is called, dt will be None.

on_next(delay: float)→ None
Do something when execution is advanced.

This event is dispatched every time next is called on self.func.

Parameters delay – The delay that was requested by the function.

run(*args, **kwargs)→ None
Run this promise.

Start self.func running, and set the proper state.

Parameters

• args – The positional arguments passed to self.func.

• kwargs – The keyword arguments passed to self.func.

earwax.promises.threaded_promise module

Provides the ThreadedPromise class.

class earwax.promises.threaded_promise.ThreadedPromise(thread_pool: concur-
rent.futures._base.Executor,
func: Op-
tional[Callable[[...],
T]] = None, future: Op-
tional[concurrent.futures._base.Future]
= None)

Bases: earwax.promises.base.Promise

A promise that a value will be available in the future.

Uses an Executor subclass (like ThreadPoolExecutor, or ProcessPoolExecutor for threading).

You can create this class directly, or by using decorators.

Here is an example of the decorator syntax:

from concurrent.futures import ThreadPoolExecutor

promise: ThreadedPromise = ThreadedPromise(ThreadPoolExecutor())

@promise.register_func
def func() -> None:

Long-running task...
return 5

@promise.event
def on_done(value: int) -> None:

Do something with the return value.

@promise.event
def on_error(e: Exception) -> None:

Do something with an error.

(continues on next page)

9.1. earwax package 89

Earwax

(continued from previous page)

@promise.event
def on_finally():

print('Done.')

promise.run()

Or you could create the promise manually:

promise = ThreadedPromise(
ThreadPoolExecutor(), func=predefined_function

)
promise.event('on_done')(print)
promise.run()

Note the use of Pyglet’s own event system.

Variables

• thread_pool – The thread pool to use.

• func – The function to submit to the thread pool.

• future – The future that is running, or None if the run() method has not yet been called.

cancel()→ None
Try to cancel self.future.

If There is no future, RuntimeError will be raised.

check(dt: float)→ None
Check state and react accordingly.

Checks to see if self.future has finished or not.

If it has, dispatch the on_done() event with the resulting value.

If an error has been raised, dispatch the on_error() event with the resulting error.

If either of these things have happened, dispatch the on_finally() event.

Parameters dt – The time since the last run.

This argument is required by pyglet.clock.schedule.

register_func(func: Callable[[...], T])→ Callable[[...], T]
Register promise function.

Registers the function to be called by the run() method.

Parameters func – The function to use. Will be stored in self.func.

run(*args, **kwargs)→ None
Start this promise running.

The result of calling submit on self.thread_pool will be stored on self.future.

If this instance does not have a function registered yet, RuntimeError will be raised.

Parameters

• args – The extra positional arguments to pass along to submit.

• kwargs – The extra keyword arguments to pass along to submit.

90 Chapter 9. earwax

Earwax

Module contents

Provides the various promise classes.

class earwax.promises.PromiseStates
Bases: enum.Enum

The possible states of earwax.Promise instances.

Variables

• not_ready – The promise has been created, but a function must still be added.

How this is done depends on how the promise subclass in question has been implemented,
and may not always be used.

• ready – The promise has been created, and a function registered. The run() method has
not yet been called.

• running – The promise’s run() method has been called, but the function has not yet
returned a value, or raised an error.

• done – The promise has finished, and there was no error. The on_done() and
on_finally() events have already been dispatched.

• error – The promise completed, but there was an error, which was handled by the
on_error() event.

The on_finally() event has been dispatched.

• cancelled – The promise has had its cancel() method called, and its on_cancel()
event has been dispatched.

cancelled = 5

done = 3

error = 4

not_ready = 0

ready = 1

running = 2

class earwax.promises.ThreadedPromise(thread_pool: concurrent.futures._base.Executor, func:
Optional[Callable[[...], T]] = None, future: Op-
tional[concurrent.futures._base.Future] = None)

Bases: earwax.promises.base.Promise

A promise that a value will be available in the future.

Uses an Executor subclass (like ThreadPoolExecutor, or ProcessPoolExecutor for threading).

You can create this class directly, or by using decorators.

Here is an example of the decorator syntax:

from concurrent.futures import ThreadPoolExecutor

promise: ThreadedPromise = ThreadedPromise(ThreadPoolExecutor())

@promise.register_func
def func() -> None:

Long-running task...

(continues on next page)

9.1. earwax package 91

Earwax

(continued from previous page)

return 5

@promise.event
def on_done(value: int) -> None:

Do something with the return value.

@promise.event
def on_error(e: Exception) -> None:

Do something with an error.

@promise.event
def on_finally():

print('Done.')

promise.run()

Or you could create the promise manually:

promise = ThreadedPromise(
ThreadPoolExecutor(), func=predefined_function

)
promise.event('on_done')(print)
promise.run()

Note the use of Pyglet’s own event system.

Variables

• thread_pool – The thread pool to use.

• func – The function to submit to the thread pool.

• future – The future that is running, or None if the run() method has not yet been called.

cancel()→ None
Try to cancel self.future.

If There is no future, RuntimeError will be raised.

check(dt: float)→ None
Check state and react accordingly.

Checks to see if self.future has finished or not.

If it has, dispatch the on_done() event with the resulting value.

If an error has been raised, dispatch the on_error() event with the resulting error.

If either of these things have happened, dispatch the on_finally() event.

Parameters dt – The time since the last run.

This argument is required by pyglet.clock.schedule.

register_func(func: Callable[[...], T])→ Callable[[...], T]
Register promise function.

Registers the function to be called by the run() method.

Parameters func – The function to use. Will be stored in self.func.

run(*args, **kwargs)→ None
Start this promise running.

92 Chapter 9. earwax

Earwax

The result of calling submit on self.thread_pool will be stored on self.future.

If this instance does not have a function registered yet, RuntimeError will be raised.

Parameters

• args – The extra positional arguments to pass along to submit.

• kwargs – The extra keyword arguments to pass along to submit.

class earwax.promises.StaggeredPromise(func: Callable[[...], Generator[float, None, T]])
Bases: earwax.promises.base.Promise

A promise that can suspend itself at will.

I found myself missing the MOO-style suspend() function, so thought I’d make the same capability available in
earwax:

@StaggeredPromise.decorate
def promise() -> StaggeredPromiseGeneratorType:

game.output('Hello.')
yield 2.0
game.output('World.')

promise.run()
game.run(window)

This class supports all the promise events found on earwax.Promise, and also has a on_next() event,
which will fire whenever a promise suspends:

@promise.event
def on_next(delay: float) -> None:

print(f'I waited {delay}.')

Variables

• func – The function to run.

• generator – The generator returned by self.func.

cancel()→ None
Cancel this promise.

Cancels self.generator, and sets the proper state.

classmethod decorate(func: Callable[[...], Generator[float, None, T]]) → ear-
wax.promises.staggered_promise.StaggeredPromise

Make an instance from a decorated function.

This function acts as a decorator method for returning earwax.StaggeredPromise instances.

Using this function seems to help mypy figure out what type your function is.

Parameters func – The function to decorate.

do_next(dt: Optional[float])→ None
Advance execution.

Calls next(self.generator), and then suspend for however long the function demands.

If StopIteration is raised, then the args from that exception are sent to the self.on_done event.

If any other exception is raised, then that exception is passed along to the self.on_error event.

9.1. earwax package 93

Earwax

Parameters dt – The time since the last run, as passed by pyglet.clock.
schedule_once.

If this is the first time this method is called, dt will be None.

on_next(delay: float)→ None
Do something when execution is advanced.

This event is dispatched every time next is called on self.func.

Parameters delay – The delay that was requested by the function.

run(*args, **kwargs)→ None
Run this promise.

Start self.func running, and set the proper state.

Parameters

• args – The positional arguments passed to self.func.

• kwargs – The keyword arguments passed to self.func.

class earwax.promises.Promise
Bases: typing.Generic, earwax.mixins.RegisterEventMixin

The base class for promises.

Instances of this class have a few possible states which are contained in the PromiseStates enumeration.

Variables state – The state this promise is in (see above).

cancel()→ None
Override to provide cancel functionality.

done(value: T)→ None
Finish up.

Dispatches the on_done() event with the given value, and set self.state to earwax.
PromiseStates.done.

Parameters value – The value that was returned from whatever function this promise had.

error(e: Exception)→ None
Handle an error.

This event dispatches the on_error() event with the passed exception.

Parameters e – The exception that was raised.

on_cancel()→ None
Handle cancellation.

This event is dispatched when this instance has its cancel() method called.

on_done(result: T)→ None
Handle return value.

This event is dispatched when this promise completes with no error.

Parameters result – The value returned by the function.

on_error(e: Exception)→ None
Handle an error.

This event is dispatched when this promise raises an error.

Parameters e – The exception that was raised.

94 Chapter 9. earwax

Earwax

on_finally()→ None
Handle this promise comise completing.

This event is dispatched when this promise completes, whether or not it raises an error.

run(*args, **kwargs)→ None
Start this promise running.

earwax.story package

Submodules

earwax.story.context module

Provides the StoryContext class.

class earwax.story.context.StoryContext(game: earwax.game.Game, world: ear-
wax.story.world.StoryWorld, edit: bool =
NOTHING, state: earwax.story.world.WorldState
= NOTHING, errors: List[str] = NOTHING,
warnings: List[str] = NOTHING)

Bases: object

Holds references to various objects required to make a story work.

before_run()→ None
Set the default panning strategy.

configure_earwax()→ None
Push a menu that can be used to configure Earwax.

configure_music()→ None
Allow adding and removing main menu music.

credit_menu(credit: earwax.credit.Credit)→ Callable[[], None]
Push a menu that can deal with credits.

credits_menu()→ None
Add or remove credits.

earwax_bug()→ None
Open the Earwax new issue URL.

get_default_config_file()→ pathlib.Path
Get the default configuration filename.

get_default_logger()→ logging.Logger
Return a default logger.

get_default_state()→ earwax.story.world.WorldState
Get a default state.

get_main_menu()→ earwax.menus.menu.Menu
Create a main menu for this world.

get_window_caption()→ str
Return a suitable window title.

load()→ None
Load an existing game, and start it.

9.1. earwax package 95

Earwax

play()→ None
Push the world level.

push_credits()→ None
Push the credits menu.

set_initial_room()→ None
Set the initial room.

set_panner_strategy()→ None
Allow the changing of the panner strategy.

show_warnings()→ None
Show any generated warnings.

world_options()→ None
Configure the world.

earwax.story.edit_level module

Provides the EditLevel class.

class earwax.story.edit_level.EditLevel(game: Game, world_context: Sto-
ryContext, cursor_sound: Op-
tional[earwax.sound.Sound] = None, inven-
tory: List[earwax.story.world.RoomObject] =
NOTHING, reverb: Optional[GlobalFdnReverb]
= None, object_ambiances: Dict[str,
List[earwax.ambiance.Ambiance]] =
NOTHING, object_tracks: Dict[str,
List[earwax.track.Track]] = NOTHING,
filename: Optional[pathlib.Path] = None,
builder_menu_actions: List[earwax.action.Action]
= NOTHING)

Bases: earwax.story.play_level.PlayLevel

A level for editing stories.

add_action(obj: Union[earwax.story.world.RoomObject, earwax.story.world.RoomExit, ear-
wax.story.world.StoryWorld], name: str)→ Callable[[], None]

Add a new action to the given object.

Parameters

• obj – The object to assign the new action to.

• name – The attribute name to use.

add_ambiance(ambiances: List[earwax.story.world.WorldAmbiance]) → Callable[[], Genera-
tor[None, None, None]]

Add a new ambiance to the given list.

ambiance_menu(ambiances: List[earwax.story.world.WorldAmbiance], ambiance: ear-
wax.story.world.WorldAmbiance)→ Callable[[], Generator[None, None, None]]

Push the edit ambiance menu.

ambiances_menu()→ Generator[None, None, None]
Push a menu that can edit ambiances.

builder_menu()→ Generator[None, None, None]
Push the builder menu.

96 Chapter 9. earwax

Earwax

configure_reverb()→ None
Configure the reverb for the current room.

create_exit()→ Generator[None, None, None]
Link this room to another.

create_menu()→ Generator[None, None, None]
Show the creation menu.

create_object()→ None
Create a new object in the current room.

create_room()→ None
Create a new room.

delete()→ None
Delete the currently focused object.

delete_ambiance(ambiances: List[earwax.story.world.WorldAmbiance], ambiance: ear-
wax.story.world.WorldAmbiance)→ Callable[[], None]

Delete the ambiance.

describe_room()→ Generator[None, None, None]
Set the description for the current room.

edit_action(obj: Union[earwax.story.world.RoomObject, earwax.story.world.RoomExit, ear-
wax.story.world.StoryWorld], action: earwax.story.world.WorldAction) → Callable[[],
None]

Push a menu that allows editing of the action.

Parameters

• obj – The object the action is attached to.

• action – The action to edit (or delete).

edit_ambiance(ambiance: earwax.story.world.WorldAmbiance) → Callable[[], Generator[None,
None, None]]

Edit the ambiance.

edit_object_class(class_: earwax.story.world.RoomObjectClass)→ Callable[[], None]
Push a menu for editing object classes.

Parameters class – The object class to edit.

edit_object_class_names()→ None
Push a menu that can edit object class names.

edit_object_classes()→ None
Push a menu for editing object classes.

edit_volume_multiplier(ambiance: earwax.story.world.WorldAmbiance)→ Callable[[], Gener-
ator[None, None, None]]

Return a callable that can be used to set an ambiance volume multiplier.

Parameters ambiance – The ambiance whose volume multiplier will be changed.

get_rooms(include_current: bool = True)→ List[earwax.story.world.WorldRoom]
Return a list of rooms from this world.

Parameters include_current – If this value is True, the current room will be included.

goto_room()→ Generator[None, None, None]
Let the player choose a room to go to.

9.1. earwax package 97

Earwax

object_actions()→ Generator[None, None, None]
Push a menu that lets you configure object actions.

remessage()→ Optional[Generator[None, None, None]]
Set a message on the currently-focused object.

rename()→ Generator[None, None, None]
Rename the currently focused object.

reposition_object()→ None
Reposition the currently selected object.

room
Return the current room.

save_world()→ None
Save the world.

set_action_sound(action: earwax.story.world.WorldAction)→ Generator[None, None, None]
Set the sound on the given action.

Parameters action – The action whose sound will be changed.

set_message(action: earwax.story.world.WorldAction)→ Generator[None, None, None]
Push an editor to set the message on the provided action.

Parameters action – The action whose message attribute will be modified.

set_name(obj: Union[earwax.story.world.WorldAction, earwax.story.world.RoomObject, ear-
wax.story.world.WorldRoom])→ Generator[None, None, None]

Push an editor that can be used to change the name of obj.

Parameters obj – The object to rename.

set_object_type()→ None
Change the type of an object.

set_world_messages()→ Generator[None, None, None]
Push a menu that allows the editing of world messages.

set_world_sound(name: str)→ Callable[[], Generator[None, None, None]]
Set the given sound.

Parameters name – The name of the sound to edit.

shadow_description()→ None
Set the description of this room from another room.

shadow_name()→ None
Sow a menu to select another room whose name will be shadowed.

sounds_menu()→ Optional[Generator[None, None, None]]
Add or remove ambiances for the currently focused object.

world_sounds()→ Generator[None, None, None]
Push a menu that can be used to configure world sounds.

class earwax.story.edit_level.ObjectPositionLevel(game: Game, object:
Union[earwax.story.world.RoomObject,
earwax.story.world.RoomExit],
level: EditLevel, ini-
tial_position: Op-
tional[earwax.story.world.DumpablePoint]
= NOTHING)

98 Chapter 9. earwax

Earwax

Bases: earwax.level.Level

A level for editing the position of an object.

Variables

• object – The object or exit whose position will be edited.

• level – The edit level which pushed this level.

backward()→ None
Move the sound backwards.

cancel()→ None
Undo the move, and return everything to how it was.

clear()→ None
Clear the object position.

done()→ None
Finish editing.

down()→ None
Move the sound down.

forward()→ None
Move the sound forwards.

get_initial_position()→ Optional[earwax.story.world.DumpablePoint]
Get the object position.

left()→ None
Move the sound left.

move(x: int = 0, y: int = 0, z: int = 0)→ None
Change the position of this object.

reset()→ None
Reset the current room.

right()→ None
Move the sound right.

up()→ None
Move the sound up.

earwax.story.edit_level.push_actions_menu(game: earwax.game.Game, actions:
List[earwax.story.world.WorldAction], activate:
Callable[[earwax.story.world.WorldAction],
Optional[Generator[None, None, None]]]) →
Generator[None, None, None]

Push a menu that lets the player select an action.

Parameters

• game – The game to use when constructing the menu.

• actions – A list of actions to show.

• activate – A function to call with the chosen action.

9.1. earwax package 99

Earwax

earwax.story.edit_level.push_rooms_menu(game: earwax.game.Game, rooms:
List[earwax.story.world.WorldRoom], acti-
vate: Callable[[earwax.story.world.WorldRoom],
Optional[Generator[None, None, None]]]) →
Generator[None, None, None]

Push a menu with all the provided rooms.

Parameters

• game – The game to pop this level from when a room is selected.

• rooms – The rooms which should show up in the menu.

• activate – The function to call with the selected room.

earwax.story.play_level module

Provides the StoryLevel class.

class earwax.story.play_level.PlayLevel(game: Game, world_context: Sto-
ryContext, cursor_sound: Op-
tional[earwax.sound.Sound] = None, inven-
tory: List[earwax.story.world.RoomObject] =
NOTHING, reverb: Optional[GlobalFdnReverb]
= None, object_ambiances: Dict[str,
List[earwax.ambiance.Ambiance]] = NOTHING,
object_tracks: Dict[str, List[earwax.track.Track]]
= NOTHING)

Bases: earwax.level.Level

A level that can be used to play a story.

Instances of this class can only play stories, not edit them.

Variables

• world_context – The context that contains the world, and the state for this story.

• action_sounds – The sounds which were started by object actions.

• cursor_sound – The sound that plays when moving through objects and ambiances.

• inventory – The list of Roomobject instances that the player is carrying.

• reverb – The reverb object for the current room.

• object_ambiances – The ambiances for a all objects in the room, excluding those in
the players’ inventory.

• object_tracks – The tracks for each object in the current room, excluding those objects
that are in the player’s inventory.

actions_menu(obj: earwax.story.world.RoomObject, menu_action: Op-
tional[earwax.story.world.WorldAction] = None)→ None

Show a menu of object actions.

Parameters

• obj – The object which the menu will be shown for.

• menu_action – The action which will be used instead of the default
actions_action.

100 Chapter 9. earwax

Earwax

activate()→ None
Activate the currently focussed object.

build_inventory()→ None
Build the player inventory.

This method should be performed any time state changes.

cycle_category(direction: int)→ Generator[None, None, None]
Cycle through information categories.

cycle_object(direction: int)→ None
Cycle through objects.

do_action(action: earwax.story.world.WorldAction, obj: Union[earwax.story.world.RoomObject,
earwax.story.world.RoomExit], pan: bool = True)→ None

Actually perform an action.

Parameters

• action – The action to perform.

• obj – The object that owns this action.

If this value is of type RoomObject, and its position value is not None, then the
action sound will be panned accordingly..

• pan – If this value evaluates to False, then regardless of the obj value, no panning will
be performed.

drop_object(obj: earwax.story.world.RoomObject)→ Callable[[], None]
Return a callable that can be used to drop an object.

drop_object_menu()→ None
Push a menu that can be used to drop an object.

get_gain(type: earwax.track.TrackTypes, multiplier: float)→ float
Return the proper gain.

get_objects()→ List[earwax.story.world.RoomObject]
Return a list of objects that the player can see.

This method will exclude objects which are in the as yet unimplemented player inventory.

The resulting list will be sorted with Python’s sorted builtin.

inventory_menu()→ None
Show the inventory menu.

main_menu()→ Generator[None, None, None]
Return to the main menu.

next_category()→ Generator[None, None, None]
Next information category.

next_object()→ None
Go to the next object.

object
Return the object from self.state.

object_menu(obj: earwax.story.world.RoomObject)→ Callable[[], None]
Return a callable which shows the inventory menu for an object.

9.1. earwax package 101

Earwax

objects_menu(objects: List[earwax.story.world.RoomObject], func:
Callable[[earwax.story.world.RoomObject], Callable[[], None]], title: str) →
None

Push a menu of objects.

on_pop()→ None
Stop all the action sounds.

on_push()→ None
Set the initial room.

The room is the world from the state object, rather than the initial_room.

pause()→ None
Pause All the currently-playing room sounds.

perform_action(obj: earwax.story.world.RoomObject, action: earwax.story.world.WorldAction)→
Callable[[], None]

Return a function that will perform an object action.

This method is used by actions_menu() to allow the player to trigger object actions.

The inner method performs the following actions:

• Shows the action message to the player.

• Plays the action sound. If obj has coordinates, the sound will be heard at those coordinates.

• Pops the level to remove the actions menu from the stack.

Parameters

• obj – The object which has the action.

• action – The action which should be performed.

play_action_sound(sound: str, position: Optional[earwax.point.Point] = None)→ None
Play an action sound.

Parameters

• sound – The filename of the sound to play.

• position – The position of the owning object.

If this value is None, the sound will not be panned.

play_cursor_sound(position: Optional[earwax.point.Point])→ None
Play and set the cursor sound.

play_object_ambiances(obj: earwax.story.world.RoomObject)→ None
Play all the ambiances for the given object.

Parameters obj – The object whose ambiances will be played.

previous_category()→ Generator[None, None, None]
Previous information category.

previous_object()→ None
Go to the previous object.

save_state()→ None
Save the current state.

set_room(room: earwax.story.world.WorldRoom)→ None
Move to a new room.

102 Chapter 9. earwax

Earwax

state
Return the current state.

stop_action_sounds()→ None
Stop all action sounds.

stop_object_ambiances(obj: earwax.story.world.RoomObject)→ None
Stop all the ambiances for the given object.

Parameters obj – The object whose ambiances will be stopped.

take_object(obj: earwax.story.world.RoomObject)→ None
Take an object.

use_exit(x: earwax.story.world.RoomExit)→ None
Use the given exit.

This method is called by the activate() method.

Parameters x – The exit to use.

use_object(obj: earwax.story.world.RoomObject)→ Callable[[], None]
Return a callable that can be used to use an object.

use_object_menu()→ None
Push a menu that allows using an object.

world
Get the attached world.

earwax.story.world module

Provides various classes relating to worlds.

class earwax.story.world.DumpablePoint(x: T, y: T, z: T)
Bases: earwax.point.Point, earwax.mixins.DumpLoadMixin

A point that can be dumped and loaded.

class earwax.story.world.DumpableReverb(gain: float = 1.0, late_reflections_delay: float
= 0.01, late_reflections_diffusion: float =
1.0, late_reflections_hf_reference: float =
500.0, late_reflections_hf_rolloff: float =
0.5, late_reflections_lf_reference: float =
200.0, late_reflections_lf_rolloff: float = 1.0,
late_reflections_modulation_depth: float = 0.01,
late_reflections_modulation_frequency: float =
0.5, mean_free_path: float = 0.02, t60: float =
1.0)

Bases: earwax.reverb.Reverb, earwax.mixins.DumpLoadMixin

A reverb that can be dumped.

class earwax.story.world.RoomExit(destination_id: str, action: ear-
wax.story.world.WorldAction = NOTHING, position:
Optional[earwax.story.world.DumpablePoint] = None)

Bases: earwax.mixins.DumpLoadMixin

An exit between two rooms.

Instances of this class rely on their action property to show messages and play sounds, as well as for the name
of the exit.

9.1. earwax package 103

Earwax

The actual destination can be retrieved with the destination property.

Variables

• destination_id – The ID of the room on the other side of this exit.

• location – The location of this exit.

This value is provided by the containing StoryWorld class.

• action – An action to perform when using this exit.

• position – The position of this exit.

If this value is None, then any ambiances will not be panned.

destination
Return the room this exit leads from.

This value is inferred from destination_id.

class earwax.story.world.RoomObject(id: str = NOTHING, name: str = ’Un-
named Object’, actions_action: Op-
tional[earwax.story.world.WorldAction] = None,
ambiances: List[earwax.story.world.WorldAmbiance]
= NOTHING, actions:
List[earwax.story.world.WorldAction]
= NOTHING, position: Op-
tional[earwax.story.world.DumpablePoint] = None,
drop_action: Optional[earwax.story.world.WorldAction]
= None, take_action: Op-
tional[earwax.story.world.WorldAction] = None,
use_action: Optional[earwax.story.world.WorldAction]
= None, type: earwax.story.world.RoomObjectTypes =
NOTHING, class_names: List[str] = NOTHING)

Bases: earwax.story.world.StringMixin, earwax.mixins.DumpLoadMixin

An object in the story.

Instances of this class will either sit in a room, or be in the player’s inventory.

Variables

• id – The unique ID of this object. If this ID is not provided, then picking it up will not be
reliable, as the ID will be randomly generated.

Other than the above restriction, you can set the ID to be whatever you like.

• name – The name of this object.

This value will be used in any list of objects.

• actions_action – An action object which will be used when viewing the actions menu
for this object.

If this value is None, no music will play when viewing the actions menu for this object, and
the actions_menu message will be shown.

• ambiances – A list of ambiances to play at the position of this object.

• actions – A list of actions that can be performed on this object.

• position – The position of this object.

If this value is None, then any ambiances will not be panned.

104 Chapter 9. earwax

Earwax

• drop_action – The action that will be used when this object is dropped by the player.

If this value is None, the containing world’s drop_action attribute will be used.

• take_action – The action that will be used when this object is taken by the player.

If this value is None, the containing world’s take_action attribute will be used.

• use_action – The action that will be used when this object is used by the player.

If this value is None, then this object is considered unusable.

• type – Specifies what sort of object this is.

• class_names – The names of all the classes this object belongs to.

If you want a list of RoomObjectClass instances, use the classes property.

• location – The room where this object is located.

This value is set by the StoryWorld() which holds this instance.

If this object is picked up, the location will not change, but this object will be removed from
the location’s objects dictionary.

classes
Return a list of classes.

This value is inferred from the class_names list.

is_droppable
Return True if this object can be dropped.

is_stuck
Return True if this object is stuck.

is_takeable
Return True if this object can be taken.

is_usable
Return True if this object can be used.

class earwax.story.world.RoomObjectClass(name: str)
Bases: earwax.mixins.DumpLoadMixin

Add a class for objects.

Instances of this class let you organise objects into classes.

This is used for making exits discriminate.

Variables name – The name of the class.

class earwax.story.world.RoomObjectTypes
Bases: enum.Enum

The type of a room object.

Variables

• stuck – This object cannot be moved.

• takeable – This object can be picked up.

• droppable – This object can be dropped.

This value automatically implies takeable.

droppable = 2

9.1. earwax package 105

Earwax

stuck = 0

takeable = 1

usable = 4

class earwax.story.world.StoryWorld(game: Game, name: str = ’Untitled World’, author:
str = ’Unknown’, main_menu_musics: List[str] =
NOTHING, cursor_sound: Optional[str] = None,
empty_category_sound: Optional[str] = None,
end_of_category_sound: Optional[str] = None, rooms:
Dict[str, earwax.story.world.WorldRoom] = NOTHING,
initial_room_id: Optional[str] = None, messages:
earwax.story.world.WorldMessages = NOTHING,
take_action: earwax.story.world.WorldAction = NOTH-
ING, drop_action: earwax.story.world.WorldAction
= NOTHING, panner_strategy: str = NOTHING, ob-
ject_classes: List[earwax.story.world.RoomObjectClass]
= NOTHING)

Bases: earwax.mixins.DumpLoadMixin

The top level world object.

Worlds can contain rooms and messages, as well as various pieces of information about themselves.

Variables

• game – The game this world is part of.

• name – The name of this world.

• author – The author of this world.

The format of this value is arbitrary, although Author Name <author@domain.
com> is recommended.

• main_menu_musics – A list of filenames to play as music while the main menu is being
shown.

• cursor_sound – The sound that will play when moving over objects.

If this value is None, no sound will be heard.

• empty_category_sound – The sound which will be heard when cycling to an empty
category.

• end_of_category_sound – The sound which will be heard when cycling to the end of
a category.

• rooms – A mapping of room IDs to rooms.

• initial_room_id – The ID of the room to be used when first starting the game.

• messages – The messages object used by this world.

• take_action – The default take action.

This value will be used when an object is taken with its take_action attribute set to
None.

• drop_action – The default drop action.

This value will be used when an object is dropped and has its drop_action attribute is
None.

• panner_strategy – The name of the default panner strategy to use.

106 Chapter 9. earwax

Earwax

• object_classes – A list of object classes.

Objects are mapped to these classes by way of their class_names and classes lists.

add_room(room: earwax.story.world.WorldRoom, initial: Optional[bool] = None)→ None
Add a room to this world.

Parameters

• room – The room to add.

• initial – An optional boolean to specify whether the given room should become the
initial_room or not.

If this value is None, then this room will be set as default if initial_room_id is itself
None.

all_objects()→ Iterator[earwax.story.world.RoomObject]
Return a generator of every object contained by this world.

dump()→ Dict[str, Any]
Dump this world.

initial_room
Return the initial room for this world.

classmethod load(data: Dict[str, Any], *args)→ Any
Load credits before anything else.

class earwax.story.world.StringMixin
Bases: object

Provides an __str__ method.

class earwax.story.world.WorldAction(name: str = ’Unnamed Action’, message: Optional[str]
= None, sound: Optional[str] = None, rumble_value:
float = 0.0, rumble_duration: int = 0)

Bases: earwax.mixins.DumpLoadMixin

An action that can be performed.

Actions are used by the RoomObject and RoomExit classes.

If attached to a RoomObject instance, its name will appear in the action menu. If attached to a
RoomExit instance, then its name will appear in the exits list.

Variables

• name – The name of this action.

• message – The message that is shown to the player when this action is used.

If this value is omitted, no message will be shown.

• sound – The sound that should play when this action is used.

If this value is omitted, no sound will be heard.

• rumble_value – The power of a rumble triggered by this action.

This value should be between 0.0 (nothing) and 1.0 (full power).

If this value is 0, no rumble will occur.

• rumble_duration – The time (in seconds) the rumble should continue for.

If this value is 0, no rumble will occur.

9.1. earwax package 107

Earwax

class earwax.story.world.WorldAmbiance(path: str, volume_multiplier: float = 1.0)
Bases: earwax.mixins.DumpLoadMixin

An ambiance.

This class represents a looping sound, which is either attached to a WorldRoom instance, or a RoomObject
instance.

Variables

• path – The path to a sound file.

• volume_multiplier – A value to multiply the ambiance volume by to get the volume
for this sound..

class earwax.story.world.WorldMessages(no_objects: str = ’This room is empty.’, no_actions:
str = ’There is nothing you can do with this ob-
ject.’, no_exits: str = ’There is no way out of
this room.’, no_use: str = ’You cannot use {}.’,
nothing_to_use: str = ’You have nothing that can
be used.’, nothing_to_drop: str = ’You have noth-
ing that can be dropped.’, empty_inventory: str
= "You aren’t carrying anything.", room_activate:
str = ’You cannot do that.’, room_category: str =
’Location’, objects_category: str = ’Objects’, ex-
its_category: str = ’Exits’, actions_menu: str = ’You
step up to {}.’, inventory_menu: str = ’Inventory’,
main_menu: str = ’Main Menu’, play_game: str =
’Start new game’, load_game: str = ’Load game’,
show_credits: str = ’Show Credits’, credits_menu:
str = ’Credits’, welcome: str = ’Welcome to this
game.’, no_saved_game: str = ’You have no game
saved.’, exit: str = ’Exit’)

Bases: earwax.mixins.DumpLoadMixin

All the messages that can be shown to the player.

When adding a message to this class, make sure to add the same message and an appropriate description to the
message_descriptions in earwax/story/edit_level.py.

Variables

• no_objects – The message which is shown when the player cycles to an empty list of
objects.

• no_actions – The message which is shown when there are no actions for an object.

• no_exits – The message which is shown when the player cycles to an empty list of exits.

• no_use – The message which is shown when the player tries to use an object which cannot
be used.

• nothing_to_use – The message which is shown when accessing the use menu with no
usable objects.

• nothing_to_drop – The message which is shown when accessing the drop menu with
no droppable items.

• empty_inventory – The message which is shown when trying to access an empty in-
ventory menu.

• room_activate – The message which is shown when enter is pressed with the room
category selected.

108 Chapter 9. earwax

Earwax

Maybe an action attribute should be added to rooms, so that enter can be used everywhere?

• room_category – The name of the “room” category.

• objects_category – The name of the “objects” category.

• exits_category – The name of the “exits” category.

• actions_menu – The message which is shown when the actions menu is activated.

• inventory_menu – The title of the inventory menu.

You can include the name of the object in question, by including a set of braces:

<message id="actions_menu">You examine {}.</message>

• main_menu – The title of the main menu.

• play_game – The title of the “play game” entry in the main menu.

• load_game – The title of the “load game” entry in the main menu.

• show_credits – The title of the “show credits” entry in the main menu.

• credits_menu – The title of the credits menu.

• welcome – The message which is shown when play starts.

• no_saved_game – The message which is spoken when there is no game to load.

• exit – The title of the “exit” entry of the main menu.

class earwax.story.world.WorldRoom(id: str = NOTHING, name: str = ’Unnamed
Room’, description: str = ’Not described.’, am-
biances: List[earwax.story.world.WorldAmbiance]
= NOTHING, objects: Dict[str, ear-
wax.story.world.RoomObject] = NOTHING, exits:
List[earwax.story.world.RoomExit] = NOTHING, reverb:
Optional[earwax.story.world.DumpableReverb] = None)

Bases: earwax.mixins.DumpLoadMixin, earwax.story.world.StringMixin

A room in a world.

Rooms can contain exits and object.

It is worth noting that both the room name and description can either be straight text, or they can consist
of a hash character (#) followed by the ID of another room, from which the relevant attribute will be presented
at runtime.

If this is the case, changing the name or description of the referenced room will change the corresponding
attribute on the first instance.

This convertion can only happen once, as otherwise there is a risk of circular dependencies, causing a
RecursionError to be raised.

Variables

• world – The world this room is part of.

This value is set by the containing StoryRoom instance.

• id – The unique ID of this room.

If this value is not provided, then an ID will be generated, based on the number of rooms
that have already been loaded.

9.1. earwax package 109

Earwax

If you want to link this room with exits, it is highly recommended that you provide your
own ID.

• name – The name of this room, or the #id of a room to inherit the name from.

• description – The description of this room, or the #id of another room to inherit the
description from.

• ambiances – A list of ambiances to play when this room is in focus.

• objects – A mapping of object ids to objects.

To get a list of objects, the canonical way is to use the earwax.story.play_level.
PlayLevel.get_objects() method, as this will properly hide objects which are in
the player’s inventory.

• exits – A list of exits from this room.

create_exit(destination: earwax.story.world.WorldRoom, **kwargs) → ear-
wax.story.world.RoomExit

Create and return an exit that links this room to another.

This method will add the new exits to this room’s exits list, and set the appropriate location on the
new exit.

Parameters

• destination – The destination whose ID will become the new exit’s
destination_id.

• kwargs – Extra keyword arguments to pass to the RoomExit constructor..

create_object(**kwargs)→ earwax.story.world.RoomObject
Create and return an exit from the provided kwargs.

This method will add the created object to this room’s objects dictionary, and set the appropriate
location attribute.

Parameters kwargs – Keyword arguments to pass to the constructor of RoomObject.

get_description()→ str
Return the actual description of this room.

get_name()→ str
Return the actual name of this room.

class earwax.story.world.WorldState(world: earwax.story.world.StoryWorld, room_id: str
= NOTHING, inventory_ids: List[str] = NOTHING,
category_index: int = NOTHING, object_index: Op-
tional[int] = None)

Bases: earwax.mixins.DumpLoadMixin

The state of a story.

With the exception of the world attribute, this class should only have primitive types as its attributes, so that
instances can be easily dumped to yaml.

Variables

• world – The world this state represents.

• room_id – The ID of the current room.

• inventory_ids – A list of object IDs which make up the player’s inventory.

• category_index – The player’s position in the list of categories.

110 Chapter 9. earwax

Earwax

• object_index – The player’s position in the current category.

category
Return the current category.

get_default_room_id()→ str
Get the first room ID from the attached world.

Parameters instance – The instance to work on.

room
Get the current room.

class earwax.story.world.WorldStateCategories
Bases: enum.Enum

The various categories the player can select.

Variables

• room – The category where the name and description of a room are shown.

• objects – The category where the objects of a room are shown.

• exits – The category where the exits of a room are shown.

exits = 2

objects = 1

room = 0

Module contents

The story module.

Stories are a way of building worlds with no code at all.

They can do a fair amount on their own: You can create rooms, exits, objects, and you can add basic actions to those
objects. In addition, you can create complex actions if you code them in yourself.

What you get out of the box:

• An easy way of creating worlds with an on screen editor.

• A main menu, with items for playing, exiting, showing credits, and loading saved games.

• Basic keyboard and controller commands for interracting with your world.

• The ability to create rich 3d environments, with all the sounds, messages, and music you can think of.

• The ability to build your world into a single Python file you can compile with a tool such as PyInstaller, or
send about as is.

If you do wish to extend your world, build it into a Python file, then edit it to add extra actions, tasks, or whatever else
you can think of.

class earwax.story.DumpablePoint(x: T, y: T, z: T)
Bases: earwax.point.Point, earwax.mixins.DumpLoadMixin

A point that can be dumped and loaded.

9.1. earwax package 111

https://www.pyinstaller.org/

Earwax

class earwax.story.DumpableReverb(gain: float = 1.0, late_reflections_delay:
float = 0.01, late_reflections_diffusion: float
= 1.0, late_reflections_hf_reference: float
= 500.0, late_reflections_hf_rolloff: float =
0.5, late_reflections_lf_reference: float =
200.0, late_reflections_lf_rolloff: float = 1.0,
late_reflections_modulation_depth: float = 0.01,
late_reflections_modulation_frequency: float = 0.5,
mean_free_path: float = 0.02, t60: float = 1.0)

Bases: earwax.reverb.Reverb, earwax.mixins.DumpLoadMixin

A reverb that can be dumped.

class earwax.story.RoomExit(destination_id: str, action: earwax.story.world.WorldAction =
NOTHING, position: Optional[earwax.story.world.DumpablePoint]
= None)

Bases: earwax.mixins.DumpLoadMixin

An exit between two rooms.

Instances of this class rely on their action property to show messages and play sounds, as well as for the name
of the exit.

The actual destination can be retrieved with the destination property.

Variables

• destination_id – The ID of the room on the other side of this exit.

• location – The location of this exit.

This value is provided by the containing StoryWorld class.

• action – An action to perform when using this exit.

• position – The position of this exit.

If this value is None, then any ambiances will not be panned.

destination
Return the room this exit leads from.

This value is inferred from destination_id.

class earwax.story.RoomObject(id: str = NOTHING, name: str = ’Unnamed Object’, ac-
tions_action: Optional[earwax.story.world.WorldAction] = None,
ambiances: List[earwax.story.world.WorldAmbiance] = NOTH-
ING, actions: List[earwax.story.world.WorldAction] = NOTH-
ING, position: Optional[earwax.story.world.DumpablePoint] =
None, drop_action: Optional[earwax.story.world.WorldAction] =
None, take_action: Optional[earwax.story.world.WorldAction] =
None, use_action: Optional[earwax.story.world.WorldAction] =
None, type: earwax.story.world.RoomObjectTypes = NOTHING,
class_names: List[str] = NOTHING)

Bases: earwax.story.world.StringMixin, earwax.mixins.DumpLoadMixin

An object in the story.

Instances of this class will either sit in a room, or be in the player’s inventory.

Variables

• id – The unique ID of this object. If this ID is not provided, then picking it up will not be
reliable, as the ID will be randomly generated.

112 Chapter 9. earwax

Earwax

Other than the above restriction, you can set the ID to be whatever you like.

• name – The name of this object.

This value will be used in any list of objects.

• actions_action – An action object which will be used when viewing the actions menu
for this object.

If this value is None, no music will play when viewing the actions menu for this object, and
the actions_menu message will be shown.

• ambiances – A list of ambiances to play at the position of this object.

• actions – A list of actions that can be performed on this object.

• position – The position of this object.

If this value is None, then any ambiances will not be panned.

• drop_action – The action that will be used when this object is dropped by the player.

If this value is None, the containing world’s drop_action attribute will be used.

• take_action – The action that will be used when this object is taken by the player.

If this value is None, the containing world’s take_action attribute will be used.

• use_action – The action that will be used when this object is used by the player.

If this value is None, then this object is considered unusable.

• type – Specifies what sort of object this is.

• class_names – The names of all the classes this object belongs to.

If you want a list of RoomObjectClass instances, use the classes property.

• location – The room where this object is located.

This value is set by the StoryWorld() which holds this instance.

If this object is picked up, the location will not change, but this object will be removed from
the location’s objects dictionary.

classes
Return a list of classes.

This value is inferred from the class_names list.

is_droppable
Return True if this object can be dropped.

is_stuck
Return True if this object is stuck.

is_takeable
Return True if this object can be taken.

is_usable
Return True if this object can be used.

class earwax.story.RoomObjectClass(name: str)
Bases: earwax.mixins.DumpLoadMixin

Add a class for objects.

Instances of this class let you organise objects into classes.

9.1. earwax package 113

Earwax

This is used for making exits discriminate.

Variables name – The name of the class.

class earwax.story.RoomObjectTypes
Bases: enum.Enum

The type of a room object.

Variables

• stuck – This object cannot be moved.

• takeable – This object can be picked up.

• droppable – This object can be dropped.

This value automatically implies takeable.

droppable = 2

stuck = 0

takeable = 1

usable = 4

class earwax.story.StoryWorld(game: Game, name: str = ’Untitled World’, author: str =
’Unknown’, main_menu_musics: List[str] = NOTHING, cur-
sor_sound: Optional[str] = None, empty_category_sound:
Optional[str] = None, end_of_category_sound: Optional[str]
= None, rooms: Dict[str, earwax.story.world.WorldRoom]
= NOTHING, initial_room_id: Optional[str] = None, mes-
sages: earwax.story.world.WorldMessages = NOTHING,
take_action: earwax.story.world.WorldAction = NOTHING,
drop_action: earwax.story.world.WorldAction = NOTH-
ING, panner_strategy: str = NOTHING, object_classes:
List[earwax.story.world.RoomObjectClass] = NOTHING)

Bases: earwax.mixins.DumpLoadMixin

The top level world object.

Worlds can contain rooms and messages, as well as various pieces of information about themselves.

Variables

• game – The game this world is part of.

• name – The name of this world.

• author – The author of this world.

The format of this value is arbitrary, although Author Name <author@domain.
com> is recommended.

• main_menu_musics – A list of filenames to play as music while the main menu is being
shown.

• cursor_sound – The sound that will play when moving over objects.

If this value is None, no sound will be heard.

• empty_category_sound – The sound which will be heard when cycling to an empty
category.

• end_of_category_sound – The sound which will be heard when cycling to the end of
a category.

114 Chapter 9. earwax

Earwax

• rooms – A mapping of room IDs to rooms.

• initial_room_id – The ID of the room to be used when first starting the game.

• messages – The messages object used by this world.

• take_action – The default take action.

This value will be used when an object is taken with its take_action attribute set to
None.

• drop_action – The default drop action.

This value will be used when an object is dropped and has its drop_action attribute is
None.

• panner_strategy – The name of the default panner strategy to use.

• object_classes – A list of object classes.

Objects are mapped to these classes by way of their class_names and classes lists.

add_room(room: earwax.story.world.WorldRoom, initial: Optional[bool] = None)→ None
Add a room to this world.

Parameters

• room – The room to add.

• initial – An optional boolean to specify whether the given room should become the
initial_room or not.

If this value is None, then this room will be set as default if initial_room_id is itself
None.

all_objects()→ Iterator[earwax.story.world.RoomObject]
Return a generator of every object contained by this world.

dump()→ Dict[str, Any]
Dump this world.

initial_room
Return the initial room for this world.

classmethod load(data: Dict[str, Any], *args)→ Any
Load credits before anything else.

class earwax.story.WorldAction(name: str = ’Unnamed Action’, message: Optional[str] = None,
sound: Optional[str] = None, rumble_value: float = 0.0, rum-
ble_duration: int = 0)

Bases: earwax.mixins.DumpLoadMixin

An action that can be performed.

Actions are used by the RoomObject and RoomExit classes.

If attached to a RoomObject instance, its name will appear in the action menu. If attached to a
RoomExit instance, then its name will appear in the exits list.

Variables

• name – The name of this action.

• message – The message that is shown to the player when this action is used.

If this value is omitted, no message will be shown.

9.1. earwax package 115

Earwax

• sound – The sound that should play when this action is used.

If this value is omitted, no sound will be heard.

• rumble_value – The power of a rumble triggered by this action.

This value should be between 0.0 (nothing) and 1.0 (full power).

If this value is 0, no rumble will occur.

• rumble_duration – The time (in seconds) the rumble should continue for.

If this value is 0, no rumble will occur.

class earwax.story.WorldAmbiance(path: str, volume_multiplier: float = 1.0)
Bases: earwax.mixins.DumpLoadMixin

An ambiance.

This class represents a looping sound, which is either attached to a WorldRoom instance, or a RoomObject
instance.

Variables

• path – The path to a sound file.

• volume_multiplier – A value to multiply the ambiance volume by to get the volume
for this sound..

class earwax.story.WorldMessages(no_objects: str = ’This room is empty.’, no_actions: str =
’There is nothing you can do with this object.’, no_exits: str
= ’There is no way out of this room.’, no_use: str = ’You
cannot use {}.’, nothing_to_use: str = ’You have nothing that
can be used.’, nothing_to_drop: str = ’You have nothing that
can be dropped.’, empty_inventory: str = "You aren’t carry-
ing anything.", room_activate: str = ’You cannot do that.’,
room_category: str = ’Location’, objects_category: str =
’Objects’, exits_category: str = ’Exits’, actions_menu: str
= ’You step up to {}.’, inventory_menu: str = ’Inventory’,
main_menu: str = ’Main Menu’, play_game: str = ’Start new
game’, load_game: str = ’Load game’, show_credits: str =
’Show Credits’, credits_menu: str = ’Credits’, welcome: str
= ’Welcome to this game.’, no_saved_game: str = ’You have
no game saved.’, exit: str = ’Exit’)

Bases: earwax.mixins.DumpLoadMixin

All the messages that can be shown to the player.

When adding a message to this class, make sure to add the same message and an appropriate description to the
message_descriptions in earwax/story/edit_level.py.

Variables

• no_objects – The message which is shown when the player cycles to an empty list of
objects.

• no_actions – The message which is shown when there are no actions for an object.

• no_exits – The message which is shown when the player cycles to an empty list of exits.

• no_use – The message which is shown when the player tries to use an object which cannot
be used.

• nothing_to_use – The message which is shown when accessing the use menu with no
usable objects.

116 Chapter 9. earwax

Earwax

• nothing_to_drop – The message which is shown when accessing the drop menu with
no droppable items.

• empty_inventory – The message which is shown when trying to access an empty in-
ventory menu.

• room_activate – The message which is shown when enter is pressed with the room
category selected.

Maybe an action attribute should be added to rooms, so that enter can be used everywhere?

• room_category – The name of the “room” category.

• objects_category – The name of the “objects” category.

• exits_category – The name of the “exits” category.

• actions_menu – The message which is shown when the actions menu is activated.

• inventory_menu – The title of the inventory menu.

You can include the name of the object in question, by including a set of braces:

<message id="actions_menu">You examine {}.</message>

• main_menu – The title of the main menu.

• play_game – The title of the “play game” entry in the main menu.

• load_game – The title of the “load game” entry in the main menu.

• show_credits – The title of the “show credits” entry in the main menu.

• credits_menu – The title of the credits menu.

• welcome – The message which is shown when play starts.

• no_saved_game – The message which is spoken when there is no game to load.

• exit – The title of the “exit” entry of the main menu.

class earwax.story.WorldRoom(id: str = NOTHING, name: str = ’Unnamed Room’,
description: str = ’Not described.’, ambiances:
List[earwax.story.world.WorldAmbiance] = NOTHING, ob-
jects: Dict[str, earwax.story.world.RoomObject] = NOTHING,
exits: List[earwax.story.world.RoomExit] = NOTHING, reverb:
Optional[earwax.story.world.DumpableReverb] = None)

Bases: earwax.mixins.DumpLoadMixin, earwax.story.world.StringMixin

A room in a world.

Rooms can contain exits and object.

It is worth noting that both the room name and description can either be straight text, or they can consist
of a hash character (#) followed by the ID of another room, from which the relevant attribute will be presented
at runtime.

If this is the case, changing the name or description of the referenced room will change the corresponding
attribute on the first instance.

This convertion can only happen once, as otherwise there is a risk of circular dependencies, causing a
RecursionError to be raised.

Variables

9.1. earwax package 117

Earwax

• world – The world this room is part of.

This value is set by the containing StoryRoom instance.

• id – The unique ID of this room.

If this value is not provided, then an ID will be generated, based on the number of rooms
that have already been loaded.

If you want to link this room with exits, it is highly recommended that you provide your
own ID.

• name – The name of this room, or the #id of a room to inherit the name from.

• description – The description of this room, or the #id of another room to inherit the
description from.

• ambiances – A list of ambiances to play when this room is in focus.

• objects – A mapping of object ids to objects.

To get a list of objects, the canonical way is to use the earwax.story.play_level.
PlayLevel.get_objects() method, as this will properly hide objects which are in
the player’s inventory.

• exits – A list of exits from this room.

create_exit(destination: earwax.story.world.WorldRoom, **kwargs) → ear-
wax.story.world.RoomExit

Create and return an exit that links this room to another.

This method will add the new exits to this room’s exits list, and set the appropriate location on the
new exit.

Parameters

• destination – The destination whose ID will become the new exit’s
destination_id.

• kwargs – Extra keyword arguments to pass to the RoomExit constructor..

create_object(**kwargs)→ earwax.story.world.RoomObject
Create and return an exit from the provided kwargs.

This method will add the created object to this room’s objects dictionary, and set the appropriate
location attribute.

Parameters kwargs – Keyword arguments to pass to the constructor of RoomObject.

get_description()→ str
Return the actual description of this room.

get_name()→ str
Return the actual name of this room.

class earwax.story.WorldState(world: earwax.story.world.StoryWorld, room_id: str = NOTH-
ING, inventory_ids: List[str] = NOTHING, category_index: int
= NOTHING, object_index: Optional[int] = None)

Bases: earwax.mixins.DumpLoadMixin

The state of a story.

With the exception of the world attribute, this class should only have primitive types as its attributes, so that
instances can be easily dumped to yaml.

Variables

118 Chapter 9. earwax

Earwax

• world – The world this state represents.

• room_id – The ID of the current room.

• inventory_ids – A list of object IDs which make up the player’s inventory.

• category_index – The player’s position in the list of categories.

• object_index – The player’s position in the current category.

category
Return the current category.

get_default_room_id()→ str
Get the first room ID from the attached world.

Parameters instance – The instance to work on.

room
Get the current room.

class earwax.story.WorldStateCategories
Bases: enum.Enum

The various categories the player can select.

Variables

• room – The category where the name and description of a room are shown.

• objects – The category where the objects of a room are shown.

• exits – The category where the exits of a room are shown.

exits = 2

objects = 1

room = 0

class earwax.story.EditLevel(game: Game, world_context: StoryContext, cursor_sound:
Optional[earwax.sound.Sound] = None, inventory:
List[earwax.story.world.RoomObject] = NOTHING, reverb:
Optional[GlobalFdnReverb] = None, object_ambiances:
Dict[str, List[earwax.ambiance.Ambiance]] = NOTHING, ob-
ject_tracks: Dict[str, List[earwax.track.Track]] = NOTHING,
filename: Optional[pathlib.Path] = None, builder_menu_actions:
List[earwax.action.Action] = NOTHING)

Bases: earwax.story.play_level.PlayLevel

A level for editing stories.

add_action(obj: Union[earwax.story.world.RoomObject, earwax.story.world.RoomExit, ear-
wax.story.world.StoryWorld], name: str)→ Callable[[], None]

Add a new action to the given object.

Parameters

• obj – The object to assign the new action to.

• name – The attribute name to use.

add_ambiance(ambiances: List[earwax.story.world.WorldAmbiance]) → Callable[[], Genera-
tor[None, None, None]]

Add a new ambiance to the given list.

9.1. earwax package 119

Earwax

ambiance_menu(ambiances: List[earwax.story.world.WorldAmbiance], ambiance: ear-
wax.story.world.WorldAmbiance)→ Callable[[], Generator[None, None, None]]

Push the edit ambiance menu.

ambiances_menu()→ Generator[None, None, None]
Push a menu that can edit ambiances.

builder_menu()→ Generator[None, None, None]
Push the builder menu.

configure_reverb()→ None
Configure the reverb for the current room.

create_exit()→ Generator[None, None, None]
Link this room to another.

create_menu()→ Generator[None, None, None]
Show the creation menu.

create_object()→ None
Create a new object in the current room.

create_room()→ None
Create a new room.

delete()→ None
Delete the currently focused object.

delete_ambiance(ambiances: List[earwax.story.world.WorldAmbiance], ambiance: ear-
wax.story.world.WorldAmbiance)→ Callable[[], None]

Delete the ambiance.

describe_room()→ Generator[None, None, None]
Set the description for the current room.

edit_action(obj: Union[earwax.story.world.RoomObject, earwax.story.world.RoomExit, ear-
wax.story.world.StoryWorld], action: earwax.story.world.WorldAction) → Callable[[],
None]

Push a menu that allows editing of the action.

Parameters

• obj – The object the action is attached to.

• action – The action to edit (or delete).

edit_ambiance(ambiance: earwax.story.world.WorldAmbiance) → Callable[[], Generator[None,
None, None]]

Edit the ambiance.

edit_object_class(class_: earwax.story.world.RoomObjectClass)→ Callable[[], None]
Push a menu for editing object classes.

Parameters class – The object class to edit.

edit_object_class_names()→ None
Push a menu that can edit object class names.

edit_object_classes()→ None
Push a menu for editing object classes.

edit_volume_multiplier(ambiance: earwax.story.world.WorldAmbiance)→ Callable[[], Gener-
ator[None, None, None]]

Return a callable that can be used to set an ambiance volume multiplier.

120 Chapter 9. earwax

Earwax

Parameters ambiance – The ambiance whose volume multiplier will be changed.

get_rooms(include_current: bool = True)→ List[earwax.story.world.WorldRoom]
Return a list of rooms from this world.

Parameters include_current – If this value is True, the current room will be included.

goto_room()→ Generator[None, None, None]
Let the player choose a room to go to.

object_actions()→ Generator[None, None, None]
Push a menu that lets you configure object actions.

remessage()→ Optional[Generator[None, None, None]]
Set a message on the currently-focused object.

rename()→ Generator[None, None, None]
Rename the currently focused object.

reposition_object()→ None
Reposition the currently selected object.

room
Return the current room.

save_world()→ None
Save the world.

set_action_sound(action: earwax.story.world.WorldAction)→ Generator[None, None, None]
Set the sound on the given action.

Parameters action – The action whose sound will be changed.

set_message(action: earwax.story.world.WorldAction)→ Generator[None, None, None]
Push an editor to set the message on the provided action.

Parameters action – The action whose message attribute will be modified.

set_name(obj: Union[earwax.story.world.WorldAction, earwax.story.world.RoomObject, ear-
wax.story.world.WorldRoom])→ Generator[None, None, None]

Push an editor that can be used to change the name of obj.

Parameters obj – The object to rename.

set_object_type()→ None
Change the type of an object.

set_world_messages()→ Generator[None, None, None]
Push a menu that allows the editing of world messages.

set_world_sound(name: str)→ Callable[[], Generator[None, None, None]]
Set the given sound.

Parameters name – The name of the sound to edit.

shadow_description()→ None
Set the description of this room from another room.

shadow_name()→ None
Sow a menu to select another room whose name will be shadowed.

sounds_menu()→ Optional[Generator[None, None, None]]
Add or remove ambiances for the currently focused object.

world_sounds()→ Generator[None, None, None]
Push a menu that can be used to configure world sounds.

9.1. earwax package 121

Earwax

class earwax.story.ObjectPositionLevel(game: Game, object:
Union[earwax.story.world.RoomObject,
earwax.story.world.RoomExit], level:
EditLevel, initial_position: Op-
tional[earwax.story.world.DumpablePoint] =
NOTHING)

Bases: earwax.level.Level

A level for editing the position of an object.

Variables

• object – The object or exit whose position will be edited.

• level – The edit level which pushed this level.

backward()→ None
Move the sound backwards.

cancel()→ None
Undo the move, and return everything to how it was.

clear()→ None
Clear the object position.

done()→ None
Finish editing.

down()→ None
Move the sound down.

forward()→ None
Move the sound forwards.

get_initial_position()→ Optional[earwax.story.world.DumpablePoint]
Get the object position.

left()→ None
Move the sound left.

move(x: int = 0, y: int = 0, z: int = 0)→ None
Change the position of this object.

reset()→ None
Reset the current room.

right()→ None
Move the sound right.

up()→ None
Move the sound up.

class earwax.story.PlayLevel(game: Game, world_context: StoryContext, cursor_sound:
Optional[earwax.sound.Sound] = None, inventory:
List[earwax.story.world.RoomObject] = NOTHING, reverb:
Optional[GlobalFdnReverb] = None, object_ambiances: Dict[str,
List[earwax.ambiance.Ambiance]] = NOTHING, object_tracks:
Dict[str, List[earwax.track.Track]] = NOTHING)

Bases: earwax.level.Level

A level that can be used to play a story.

Instances of this class can only play stories, not edit them.

122 Chapter 9. earwax

Earwax

Variables

• world_context – The context that contains the world, and the state for this story.

• action_sounds – The sounds which were started by object actions.

• cursor_sound – The sound that plays when moving through objects and ambiances.

• inventory – The list of Roomobject instances that the player is carrying.

• reverb – The reverb object for the current room.

• object_ambiances – The ambiances for a all objects in the room, excluding those in
the players’ inventory.

• object_tracks – The tracks for each object in the current room, excluding those objects
that are in the player’s inventory.

actions_menu(obj: earwax.story.world.RoomObject, menu_action: Op-
tional[earwax.story.world.WorldAction] = None)→ None

Show a menu of object actions.

Parameters

• obj – The object which the menu will be shown for.

• menu_action – The action which will be used instead of the default
actions_action.

activate()→ None
Activate the currently focussed object.

build_inventory()→ None
Build the player inventory.

This method should be performed any time state changes.

cycle_category(direction: int)→ Generator[None, None, None]
Cycle through information categories.

cycle_object(direction: int)→ None
Cycle through objects.

do_action(action: earwax.story.world.WorldAction, obj: Union[earwax.story.world.RoomObject,
earwax.story.world.RoomExit], pan: bool = True)→ None

Actually perform an action.

Parameters

• action – The action to perform.

• obj – The object that owns this action.

If this value is of type RoomObject, and its position value is not None, then the
action sound will be panned accordingly..

• pan – If this value evaluates to False, then regardless of the obj value, no panning will
be performed.

drop_object(obj: earwax.story.world.RoomObject)→ Callable[[], None]
Return a callable that can be used to drop an object.

drop_object_menu()→ None
Push a menu that can be used to drop an object.

get_gain(type: earwax.track.TrackTypes, multiplier: float)→ float
Return the proper gain.

9.1. earwax package 123

Earwax

get_objects()→ List[earwax.story.world.RoomObject]
Return a list of objects that the player can see.

This method will exclude objects which are in the as yet unimplemented player inventory.

The resulting list will be sorted with Python’s sorted builtin.

inventory_menu()→ None
Show the inventory menu.

main_menu()→ Generator[None, None, None]
Return to the main menu.

next_category()→ Generator[None, None, None]
Next information category.

next_object()→ None
Go to the next object.

object
Return the object from self.state.

object_menu(obj: earwax.story.world.RoomObject)→ Callable[[], None]
Return a callable which shows the inventory menu for an object.

objects_menu(objects: List[earwax.story.world.RoomObject], func:
Callable[[earwax.story.world.RoomObject], Callable[[], None]], title: str) →
None

Push a menu of objects.

on_pop()→ None
Stop all the action sounds.

on_push()→ None
Set the initial room.

The room is the world from the state object, rather than the initial_room.

pause()→ None
Pause All the currently-playing room sounds.

perform_action(obj: earwax.story.world.RoomObject, action: earwax.story.world.WorldAction)→
Callable[[], None]

Return a function that will perform an object action.

This method is used by actions_menu() to allow the player to trigger object actions.

The inner method performs the following actions:

• Shows the action message to the player.

• Plays the action sound. If obj has coordinates, the sound will be heard at those coordinates.

• Pops the level to remove the actions menu from the stack.

Parameters

• obj – The object which has the action.

• action – The action which should be performed.

play_action_sound(sound: str, position: Optional[earwax.point.Point] = None)→ None
Play an action sound.

Parameters

124 Chapter 9. earwax

Earwax

• sound – The filename of the sound to play.

• position – The position of the owning object.

If this value is None, the sound will not be panned.

play_cursor_sound(position: Optional[earwax.point.Point])→ None
Play and set the cursor sound.

play_object_ambiances(obj: earwax.story.world.RoomObject)→ None
Play all the ambiances for the given object.

Parameters obj – The object whose ambiances will be played.

previous_category()→ Generator[None, None, None]
Previous information category.

previous_object()→ None
Go to the previous object.

save_state()→ None
Save the current state.

set_room(room: earwax.story.world.WorldRoom)→ None
Move to a new room.

state
Return the current state.

stop_action_sounds()→ None
Stop all action sounds.

stop_object_ambiances(obj: earwax.story.world.RoomObject)→ None
Stop all the ambiances for the given object.

Parameters obj – The object whose ambiances will be stopped.

take_object(obj: earwax.story.world.RoomObject)→ None
Take an object.

use_exit(x: earwax.story.world.RoomExit)→ None
Use the given exit.

This method is called by the activate() method.

Parameters x – The exit to use.

use_object(obj: earwax.story.world.RoomObject)→ Callable[[], None]
Return a callable that can be used to use an object.

use_object_menu()→ None
Push a menu that allows using an object.

world
Get the attached world.

class earwax.story.StoryContext(game: earwax.game.Game, world: ear-
wax.story.world.StoryWorld, edit: bool = NOTHING, state:
earwax.story.world.WorldState = NOTHING, errors: List[str]
= NOTHING, warnings: List[str] = NOTHING)

Bases: object

Holds references to various objects required to make a story work.

before_run()→ None
Set the default panning strategy.

9.1. earwax package 125

Earwax

configure_earwax()→ None
Push a menu that can be used to configure Earwax.

configure_music()→ None
Allow adding and removing main menu music.

credit_menu(credit: earwax.credit.Credit)→ Callable[[], None]
Push a menu that can deal with credits.

credits_menu()→ None
Add or remove credits.

earwax_bug()→ None
Open the Earwax new issue URL.

get_default_config_file()→ pathlib.Path
Get the default configuration filename.

get_default_logger()→ logging.Logger
Return a default logger.

get_default_state()→ earwax.story.world.WorldState
Get a default state.

get_main_menu()→ earwax.menus.menu.Menu
Create a main menu for this world.

get_window_caption()→ str
Return a suitable window title.

load()→ None
Load an existing game, and start it.

play()→ None
Push the world level.

push_credits()→ None
Push the credits menu.

set_initial_room()→ None
Set the initial room.

set_panner_strategy()→ None
Allow the changing of the panner strategy.

show_warnings()→ None
Show any generated warnings.

world_options()→ None
Configure the world.

9.1.2 Submodules

earwax.action module

Provides the Action class.

126 Chapter 9. earwax

Earwax

class earwax.action.Action(title: str, func: Callable[[], Optional[Generator[None, None, None]]],
symbol: Optional[int] = None, mouse_button: Optional[int] =
None, modifiers: int = 0, joystick_button: Optional[int] = None,
hat_direction: Optional[Tuple[int, int]] = None, interval: Op-
tional[float] = None)

Bases: object

An action that can be called from within a game.

Actions can be added to Level, and ActionMap instances.

Usually, this class is not used directly, but returned by the action() method of whatever Level or
ActionMap instance it is bound to.

Variables

• title – The title of this action.

• func – The function to run.

If this value is a normal function, it will be called when the action is triggered.

If this function is a generator, any code before the first yield statement will be run when
the triggering key, hat, joystick button, or mouse button is pressed down. Anything after that
will be run when the same trigger is released.

It is worth noting that the behaviour of having a generator that yields more than once is
undefined.

• symbol – The keyboard symbol to be used (should be one of the symbols from py-
glet.window.key).

• mouse_button – The mouse button to be used (should be one of the symbols from py-
glet.window.mouse).

• modifiers – Keyboard modifiers. Should be made up of modifiers from py-
glet.window.key.

• joystick_button – The button that must be pressed on a game controller to trigger this
action.

The button can be any integer supported by any game pad.

• hat_direction – The position the hat must be in to trigger this action.

This value must be a value supported by the hat control on the controller you’re targetting.

There are some helpful default values in earwax.hat_directions. If they do not suit
your purposes, simply provide your own tuple.

It is worth noting that if you rely on the hat, there are a few things to be aware of:

If you rely on generators in hat-triggered actions, then all actions that have yielded will be
stopped when the hat returns to its default position. This is because Earwax does not attempt
to keep track of the last direction, and the hat does not generate release events like joystick
buttons do.

• interval – How often this action can run.

If None, then it is a one-time action. One-time actions should be used for things like quitting
the game, or passing through exits, where multiple uses in a short space of time would be
undesirable. Otherwise, it will be the number of seconds which must elapse between runs.

• last_run – The time this action was last run.

9.1. earwax package 127

https://pyglet.readthedocs.io/en/latest/programming_guide/keyboard.html
https://pyglet.readthedocs.io/en/latest/programming_guide/keyboard.html
https://pyglet.readthedocs.io/en/latest/programming_guide/mouse.html
https://pyglet.readthedocs.io/en/latest/programming_guide/mouse.html

Earwax

To get the number of seconds since an action was last run, use time() - action.
last_run.

run(dt: Optional[float])→ Optional[Generator[None, None, None]]
Run this action.

This method may be called by pyglet.clock.schedule_interval.

If you need to know how an action has been called, you can override this method and check dt.

It will be None if it wasn’t called by schedule_interval. This will happen either if you are dealing
with a one-time action (interval is None), or the action is being called as soon as it is triggered
(schedule_interval doesn’t allow a function to be run and scheduled in one call).

If you need to call an action from your own code, you should use:

action.run(None)

Parameters dt – Refer to the documentation for pyglet.clock.

earwax.action_map module

Provides the ActionMap class.

class earwax.action_map.ActionMap
Bases: object

An object to hold actions.

This class is the answer to the question “What do I do when I have actions I want to be attached to multiple
levels?”

You could of course use a for loop, but this class is quicker:

action_map: ActionMap = ActionMap()

@action_map.action(...)

@action_map.action(...)

level: Level = Level(game)
level.add_actions(action_map)

Variables actions – The actions to be stored on this map.

action(title: str, symbol: Optional[int] = None, mouse_button: Optional[int] = None, modifiers: int
= 0, joystick_button: Optional[int] = None, hat_direction: Optional[Tuple[int, int]] = None,
interval: Optional[float] = None) → Callable[[Callable[[], Optional[Generator[None, None,
None]]]], earwax.action.Action]

Add an action to this object.

For example:

@action_map.action(
'Walk forwards', symbol=key.W, mouse_button=mouse.RIGHT,
interval=0.5

)
def walk_forwards():

...

128 Chapter 9. earwax

https://pyglet.readthedocs.io/en/latest/modules/clock.html

Earwax

It is possible to use a generator function to have code executed before and after a trigger fires. If you need
this behaviour, see the documentation for the func attribute of earwax.Action.

Parameters

• title – The title of the new action.

This value is currently only used by earwax.ActionMenu.

• symbol – The resulting action’s symbol attribute.

• mouse_button – The resulting action’s mouse_button attribute.

• modifiers – The resulting action’s modifiers attribute.

• joystick_button – The resulting action’s joystick_button attribute.

• hat_direction – The resulting action’s hat_direction attribute.

• interval – The resulting action’s interval attribute.

add_actions(action_map: earwax.action_map.ActionMap)→ None
Add the actions from the provided map to this map.

Parameters action_map – The map whose actions should be appended to this one.

earwax.ambiance module

Provides the Ambiance class.

class earwax.ambiance.Ambiance(protocol: str, path: str, coordinates: earwax.point.Point)
Bases: object

A class that represents a positioned sound on a map.

If you want to know more about the stream and path attributes, see the documentation for synthizer.
StreamingGenerator.

Variables

• protocol – The protocol argument to pass to synthizer.
StreamingGenerator``.

• path – The path argument to pass to synthizer.StreamingGenerator.

• coordinates – The coordinates of this ambiance.

• sound – The playing sound.

This value is initialised as part of the play() method.

classmethod from_path(path: pathlib.Path, coordinates: earwax.point.Point) → ear-
wax.ambiance.Ambiance

Return a new instance from a path.

Parameters

• path – The path to build the ambiance from.

If this value is a directory, then a random file will be chosen.

• coordinates – The coordinates of this ambiance.

play(sound_manager: earwax.sound.SoundManager, **kwargs)→ None
Load and position the sound.

Parameters

9.1. earwax package 129

Earwax

• sound_manager – The sound manager which will be used to play this ambiance.

• kwargs – The additional keyword arguments to pass to play_path().

stop()→ None
Stop this ambiance from playing.

earwax.config module

Provides the Config and ConfigValue classes.

class earwax.config.Config
Bases: object

Holds configuration subsections and values.

Any attribute that is an instance of earwax.Config is considered a subsection.

Any attribute that is an instance of earwax.ConfigValue is considered a configuration value.

You can create sections like so:

from earwax import Config, ConfigValue

class GameConfig(Config):
'''Example configuration page.'''

hostname = ConfigValue('localhost')
port = ConfigValue(1234)

c = GameConfig()

Then you can access configuration values like this:

host_string = f'{c.hostname.value}:{c.port.value}'
...

Use the dump() method to get a dictionary suitable for dumping with json.

To set the name that will be used by earwax.ConfigMenu, subclass earwax.Config, and include a
__section_name__ attribute:

class NamedConfig(Config):
__section_name__ = 'Options'

Variables __section_name__ – The human-readable name of this section.

At present, this attribute is only used by earwax.ConfigMenu.

dump()→ Dict[str, Any]
Return all configuration values, recursing through subsections.

For example:

c = ImaginaryConfiguration()
d = c.dump()
with open('config.yaml', 'w') as f:

json.dump(d, f)

Use the populate_from_dict() method to restore dumped values.

130 Chapter 9. earwax

Earwax

load(f: TextIO)→ None
Load data from a file.

Uses the populate_from_dict() method on dataloaded from the given file:

c = ImaginaryConfigSection()
with open('config.yaml', 'r'):

c.load(f)

To save the data in the first place, use the save() method.

Parameters f – A file-like object to load data from.

populate_from_dict(data: Dict[str, Any])→ None
Populate values from a dictionary.

This function is compatible with (and used by) dump():

c = Config()
with open('config.yaml', 'r') as f:

c.populate_from_dict(json.load(f))

Any missing values from data are ignored.

Parameters data – The data to load.

save(f: TextIO)→ None
Dump this configuration section to a file.

Uses the dump() method to get the dumpable data.

You can save a configuration section like so:

c = ImaginaryConfigSection()
with open('config.yaml', 'w') as f:

c.save(f)

By default, YAML is used.

Parameters f – A file-like object to write the resulting data to.

class earwax.config.ConfigValue(value: T, name: Optional[str] = None, type_: Optional[object]
= None, value_converters: Optional[Dict[object,
Callable[[ConfigValue], str]]] = None, dump_func:
Optional[Callable[[T], T]] = None, load_func: Op-
tional[Callable[[str], T]] = None)

Bases: typing.Generic

A configuration value.

This class is used to make configuration values:

name = ConfigValue('username', name='Your character name', type_=str)

If you are dealing with a non-standard object, you can set custom functions for loading and dumping the objects:

from pathlib import Path
option = ConfigValue(Path.cwd(), name='Some directory')

@option.dump
def dump_path(value: Path) -> str:

return str(value)

(continues on next page)

9.1. earwax package 131

Earwax

(continued from previous page)

@option.load
def load_path(value: str) -> Path:

return Path(value)

Variables

• value – The value held by this configuration value.

• name – The human-readable name of this configuration value.

The name is currently only used by earwax.ConfigMenu.

• type_ – The type of this value. Can be inferred from value.

Currently this attribute is used by earwax.ConfigMenu to figure out how to construct
the widget that will represent this value.

• value_converters – A dictionary of type: converter functions.

These are used by earwax.ConfigMenu.option_menu() to print value, instead
of value_to_string().

• default – The default value for this configuration value.

This will be inferred from value.

• dump_func – A function that will take the actual value, and return something that YAML
can dump.

• load_func – A function that takes the value that was loaded by YAML, and returns the
actual value.

dump(func: Callable[[T], T])→ Callable[[T], T]
Add a dump function.

Parameters func – The function that will be decorated.

See the description for dump_func.

load(func: Callable[[str], T])→ Callable[[str], T]
Add a load function.

Parameters func – The function that will be decorated.

See the description for load_func.

value_to_string()→ str
Return value as a string.

This method is used by earwax.ConfigMenu when it shows values.

earwax.configuration module

Provides the Config class.

class earwax.configuration.EarwaxConfig
Bases: earwax.config.Config

The main earwax configuration.

An instance of this value will be loaded to earwax.Game.config.

132 Chapter 9. earwax

Earwax

It is advised to configure the game before calling earwax.Game.run().

editors = <earwax.configuration.EditorConfig object>

menus = <earwax.configuration.MenuConfig object>

sound = <earwax.configuration.SoundConfig object>

speech = <earwax.configuration.SpeechConfig object>

class earwax.configuration.EditorConfig
Bases: earwax.config.Config

Configure various things about editors.

Variables hat_alphabet – The letters that can be entered by a controller’s hat.

hat_alphabet = ConfigValue(value=' abcdefghijklmnopqrstuvwxyz.,1234567890@ABCDEFGHIJKLMNOPQRSTUVWXYZ-#[]{}', name='Hat alphabet', type_=<class 'str'>, value_converters=None, default=' abcdefghijklmnopqrstuvwxyz.,1234567890@ABCDEFGHIJKLMNOPQRSTUVWXYZ-#[]{}', dump_func=None, load_func=None)

class earwax.configuration.MenuConfig
Bases: earwax.config.Config

The menu configuration section.

Variables

• default_item_select_sound – The default sound to play when a menu item is se-
lected.

If this value is None, no sound will be played, unless specified by the selected menu item.

• default_item_activate_sound – The default sound to play when a menu item is
activated.

If this value is None, no sound will be played, unless specified by the activated menu item.

default_item_activate_sound = ConfigValue(value=None, name='The default sound that plays when activating items in menus', type_=typing.Union[pathlib.Path, NoneType], value_converters={<class 'NoneType'>: <function MenuConfig.<lambda>>}, default=None, dump_func=<function dump_path>, load_func=<function load_path>)

default_item_select_sound = ConfigValue(value=None, name='The default sound that plays when moving through menus', type_=typing.Union[pathlib.Path, NoneType], value_converters={<class 'NoneType'>: <function MenuConfig.<lambda>>}, default=None, dump_func=<function dump_path>, load_func=<function load_path>)

class earwax.configuration.SoundConfig
Bases: earwax.config.Config

Configure various aspects of the sound system.

Variables

• master_volume – The volume of audio_context.

This value acts as a master volume, and should be changed with either
adjust_volume(), or set_volume().

• max_volume – The maximum volume allowed by adjust_volume().

• sound_volume – The volume of general sounds.

This volume is used by earwax to set the volume of interface_sound_manager val-
ues.

• music_volume – The volume of game music.

Earwax uses this value to set the volume of the music_sound_manager sound manager.

• ambiance_volume – The volume of game ambiances.

Earwax uses this value to set the volume of the ambiance_sound_manager sound man-
ager.

9.1. earwax package 133

Earwax

• default_cache_size – The default size (in bytes) for the default buffer_cache
object.

ambiance_volume = ConfigValue(value=0.4, name='Ambiance volume', type_=<class 'float'>, value_converters=None, default=0.4, dump_func=None, load_func=None)

default_cache_size = ConfigValue(value=524288000, name='The size of the default sound cache in bytes', type_=<class 'int'>, value_converters=None, default=524288000, dump_func=None, load_func=None)

master_volume = ConfigValue(value=1.0, name='Master volume', type_=<class 'float'>, value_converters=None, default=1.0, dump_func=None, load_func=None)

max_volume = ConfigValue(value=1.0, name='Maximum volume', type_=<class 'float'>, value_converters=None, default=1.0, dump_func=None, load_func=None)

music_volume = ConfigValue(value=0.4, name='Music volume', type_=<class 'float'>, value_converters=None, default=0.4, dump_func=None, load_func=None)

sound_volume = ConfigValue(value=0.5, name='Sound volume', type_=<class 'float'>, value_converters=None, default=0.5, dump_func=None, load_func=None)

class earwax.configuration.SpeechConfig
Bases: earwax.config.Config

The speech configuration section.

Variables

• speak – Whether or not calls to output() will produce speech.

• braille – Whether or not calls to output() will produce braille.

braille = ConfigValue(value=True, name='Braille', type_=<class 'bool'>, value_converters=None, default=True, dump_func=None, load_func=None)

speak = ConfigValue(value=True, name='Speech', type_=<class 'bool'>, value_converters=None, default=True, dump_func=None, load_func=None)

earwax.configuration.dump_path(value: Optional[pathlib.Path])→ Optional[str]
Return a path as a string.

Parameters value – The path to convert.

earwax.configuration.load_path(value: Optional[str])→ Optional[pathlib.Path]
Load a path from a string.

Parameters value – The string to convert to a path.

earwax.conversation_level module

Provides the CallResponseLevel class, and various supporting classes.

class earwax.conversation_level.CallResponseSettings
Bases: earwax.config.Config

Configuration for a conversation session.

output_audio = ConfigValue(value=True, name='Play audio', type_=<class 'bool'>, value_converters=None, default=True, dump_func=None, load_func=None)

output_braille = ConfigValue(value=True, name='Output in braille', type_=<class 'bool'>, value_converters=None, default=True, dump_func=None, load_func=None)

output_speech = ConfigValue(value=True, name='Speak text', type_=<class 'bool'>, value_converters=None, default=True, dump_func=None, load_func=None)

class earwax.conversation_level.ConversationBase(id: str = NOTHING, text: Op-
tional[str] = None, sound: Op-
tional[str] = None)

Bases: earwax.mixins.DumpLoadMixin

A base for conversations and finishers.

134 Chapter 9. earwax

Earwax

class earwax.conversation_level.ConversationEditor(game: Game, tree: ear-
wax.conversation_level.ConversationTree
= NOTHING, filename: path-
lib.Path = NOTHING, items:
List[Union[earwax.conversation_level.ConversationSection,
ear-
wax.conversation_level.Finisher]]
= NOTHING, stack:
List[earwax.conversation_level.ItemsStack]
= NOTHING, at_home: bool =
False, current_position: int = 0)

Bases: earwax.level.Level

Used for editing a conversation tree.

collapse_item()→ None
Move up to the previous level of items.

current_item
Get the currently focused entry.

expand_item()→ None
Move into the next level of items.

finisher_menu()→ Optional[Generator[None, None, None]]
Show a menu of finishers for the current item.

home(silent: bool = False)→ None
Populate the items list with all items.

Parameters silent – If True, the selected item will not be output.

new_finisher()→ None
Create a new finisher.

new_section()→ None
Create a new conversation section.

next_item()→ None
Move down in the items list.

output_item()→ None
Output the current item.

previous_item()→ None
Move up in the current list.

response_menu()→ Optional[Generator[None, None, None]]
Show a response menu for the current item.

save()→ None
Save this tree.

set_initial_id()→ None
Set the initial conversation section.

set_sound()→ Optional[Generator[None, None, None]]
Set the sound for the current item.

set_text()→ Optional[Generator[None, None, None]]
Set the text for the currently focused item.

9.1. earwax package 135

Earwax

sort_items()→ None
Sort items by ID.

switch_item(direction: int)→ None
Switch items.

class earwax.conversation_level.ConversationSection(id: str = NOTHING, text:
Optional[str] = None, sound:
Optional[str] = None, be-
fore_wait: Union[float, Tu-
ple[float, float], None] = None,
after_wait: Union[float, Tu-
ple[float, float], None] = None,
response_ids: List[str] = NOTH-
ING, finisher_ids: List[str] =
NOTHING)

Bases: earwax.conversation_level.ConversationBase

A part of a conversation.

class earwax.conversation_level.ConversationTree(sections: Dict[str, ear-
wax.conversation_level.ConversationSection]
= NOTHING, finishers: Dict[str, ear-
wax.conversation_level.Finisher]
= NOTHING, initial_section_id:
Optional[str] = None, win-
ning_section_ids: List[str] =
NOTHING)

Bases: earwax.mixins.DumpLoadMixin

A structure for holding conversation sections and finishers.

class earwax.conversation_level.Finisher(id: str = NOTHING, text: Optional[str] = None,
sound: Optional[str] = None)

Bases: earwax.conversation_level.ConversationBase

Do something after a response has been selected.

class earwax.conversation_level.ItemsStack(items: List[Union[earwax.conversation_level.ConversationSection,
earwax.conversation_level.Finisher]], posi-
tion: int)

Bases: object

Store items.

earwax.credit module

Provides the Credit class.

class earwax.credit.Credit(name: str, url: str, sound: Optional[pathlib.Path] = None, loop: bool
= True)

Bases: object

A credit in a game.

Variables

• name – The name of the person or company who is being credited.

This value will be shown in a menu generated by earwax.Menu.from_credits().

• url – The URL to open when this credit is selected.

136 Chapter 9. earwax

Earwax

• sound – An optional sound to play while this credit is shown.

• loop – Whether ot not to loop sound.

classmethod earwax_credit()→ earwax.credit.Credit
Get an earwax credit.

earwax.dialogue_tree module

Provides the DialogueLine and DialogueTree classes.

class earwax.dialogue_tree.DialogueLine(parent: DialogueTree, text: Optional[str] = None,
sound: Optional[pathlib.Path] = None, can_show:
Optional[Callable[[], bool]] = None, on_activate:
Optional[Callable[[], bool]] = None, responses:
List[DialogueLine] = NOTHING)

Bases: object

A line of dialogue.

Parameters

• parent – The dialogue tree that this line of dialogue belongs to.

• text – The text that is shown as part of this dialogue line.

• sound – A portion of recorded dialogue.

• can_show – A callable which will determine whether or not this line is visible in the
conversation.

If it returns True, this line will be shown in the list.

• on_activate – A callable which will be called when this line is selected from the list of
lines.

If it returns True, the conversation can continue.

• responses – A list of responses to this line.

class earwax.dialogue_tree.DialogueTree(tracks: List[earwax.track.Track] = NOTHING)
Bases: object

A dialogue tree object.

Variables

• children – The top-level dialogue lines for this instance.

• tracks – A list of tracks to play while this dialogue tree is in focus.

get_children()→ List[earwax.dialogue_tree.DialogueLine]
Get a list of all the children who can be shown currently.

This method returns a list of those children for whom child.can_show() is True.

earwax.die module

Provides the Die class.

class earwax.die.Die(sides: int = 6)
Bases: earwax.mixins.RegisterEventMixin

A single dice.

9.1. earwax package 137

Earwax

Variables sides – The number of sides this die has.

on_roll(value: int)→ None
Code to be run when a die is rolled.

An event which is dispatched by roll() method.

Parameters value – The number that has been rolled.

roll()→ int
Roll a die.

Returns a number between 1, and self.size.

earwax.editor module

Provides the Editor class.

class earwax.editor.Editor(game: Game, dismissible: bool = True, text: str = ”, cursor_position:
Optional[int] = None, vertical_position: Optional[int] = None, val-
idator: Optional[earwax.editor.TextValidator] = None)

Bases: earwax.level.Level, earwax.mixins.DismissibleMixin

A basic text editor.

By default, the enter key dispatches the on_submit event, with the contents of earwax.Editor.text.

Below is an example of how to use this class:

e: Editor = Editor(game)

@e.event
def on_submit(text: str) -> None:

Do something with text...

game.push_level(e)

Variables

• text – The text which can be edited by this object.

• cursor_position – The position of the cursor.

• vertical_position – The position in the alphabet of the hat.

• validator – Used to validate the text.

The text will be validated before the on_submit() event is dispatched.

beginning_of_line()→ None
Move to the start of the current line.

By default, this method is called when the home key is pressed.

clear()→ None
Clear this editor.

By default, this method is called when control + u is pressed.

copy()→ None
Copy the contents of this editor to the clipboard.

138 Chapter 9. earwax

Earwax

cut()→ None
Cut the contents of this editor to the clipboard.

do_delete()→ None
Perform a forward delete.

Used by motion_delete(), as well as the vertical hat movement methods.

echo(text: str)→ None
Speak the provided text.

Parameters text – The text to speak, using tts.speak.

echo_current_character()→ None
Echo the current character.

Used when moving through the text.

end_of_line()→ None
Move to the end of the line.

By default, this method is called when the end key is pressed.

hat_down()→ None
Move down through the list of letters.

hat_up()→ None
Change the current letter to the previous one in the configured alphabet.

If the cursor is at the end of the line, moving up will select a “save” button.

If the cursor is not at the end of the line, moving up will select a “delete” button.

insert_text(text: str)→ None
Insert text at the current cursor position.

motion_backspace()→ None
Delete the previous character.

This will do nothing if the cursor is at the beginning of the line, or there is no text to delete.

motion_delete()→ None
Delete the character under the cursor.

Nothing will happen if we are at the end of the line (or there is no text, which will amount to the same
thing).

motion_down()→ None
Arrow down.

Since we’re not bothering with multiline text fields at this stage, just move the cursor to the end of the line,
and read the whole thing.

By default, this method is called when the down arrow key is pressed.

motion_left()→ None
Move left in the editor.

By default, this method is called when the left arrow key is pressed.

motion_right()→ None
Move right in the editor.

By default, this method is called when the right arrow key is pressed.

9.1. earwax package 139

Earwax

motion_up()→ None
Arrow up.

Since we’re not bothering with multiline text fields at this stage, just move the cursor to the start of the
line, and read the whole thing.

By default, this method is called when the up arrow key is pressed.

on_submit(text: str)→ None
Code to be run when this editor is submitted.

The event which is dispatched if the enter key is pressed.

Parameters text – The contents of self.text.

on_text(text: str)→ None
Text has been entered.

If the cursor is at the end of the line, append the text. Otherwise, insert it.

Parameters text – The text that has been entered.

paste()→ None
Paste the contents of the clipboard into this editor.

set_cursor_position(pos: Optional[int])→ None
Set the cursor position within text.

If pos is None, then the cursor will be at the end of the line. Otherwise, pos should be an integer between
0 and len(self.text) - 1.

Parameters pos – The new cursor position.

submit()→ None
Submit self.text.

Dispatch the on_submit event with the contents of self.text after checking the validator is
happy.

By default, this method is called when the enter key is pressed.

class earwax.editor.TextValidator(func: Callable[[str], Optional[str]])
Bases: object

A class to validate the text entered into editors.

This class takes a function which must either return None to indicate success, or a message which will be output
to the player.

Parameters func – The function to validate the text with.

classmethod float(message: str = ’Invalid decimal: {}.’) → T
Return a validator which ensures text can be cast to a float.

Parameters message – The message which will be shown if an invalid float is given.

classmethod int(message: str = ’Invalid number: {}.’, base: int = 10)→ T
Return a validator which ensures text can be cast to an integer.

Parameters

• message – The message which will be returned if the cast fails.

• base – The base for to use when casting the text.

classmethod not_empty(message: str = ’You must supply a value.’) → T
Make a validator that does not except an empty string.

140 Chapter 9. earwax

Earwax

Parameters message – The message which will be shown if an empty string is provided.

classmethod regexp(pattern: re.Pattern, message: str = ’Invalid value: {}.’) → T
Make a regexp validator.

Parameters

• pattern – The regular expression which the text in the editor must match.

• message – The message which will be returned if no match is found.

earwax.event_matcher module

Provides the EventMatcher class.

class earwax.event_matcher.EventMatcher(game: Game, name: str)
Bases: object

Matches events for Game instances.

An object to call events on a Game instance’s level property.

Used to prevent us writing loads of events out.

Variables

• game – The game this matcher is bound to.

• name – The name of the event this matcher uses.

dispatch(*args, **kwargs)→ None
Dispatch this event.

Find the appropriate event on game.level, if game.level is not None.

If self.game.level doesn’t have an event of the proper name, search instead on self.game.

Parameters

• args – The positional arguments to pass to any event that is found.

• kwargs – The keyword arguments to pass to any event that is found.

earwax.game module

Provides the Game class.

class earwax.game.Game(name: str = ’earwax.game’, audio_context: Optional[object] = NOTH-
ING, buffer_cache: earwax.sound.BufferCache = NOTHING, inter-
face_sound_manager: earwax.sound.SoundManager = NOTHING, mu-
sic_sound_manager: Optional[earwax.sound.SoundManager] = NOTH-
ING, ambiance_sound_manager: Optional[earwax.sound.SoundManager]
= NOTHING, thread_pool: concurrent.futures._base.Executor = NOTHING,
credits: List[earwax.credit.Credit] = NOTHING, logger: logging.Logger =
NOTHING)

Bases: earwax.mixins.RegisterEventMixin

The main game object.

This object holds a reference to the game window, as well as a list of Level instances.

In addition, references to various parts of the audio subsystem reside on this object, namely audio_context.

Instances of the Level class can be pushed, popped, and replaced. The entire stack can also be cleared.

9.1. earwax package 141

Earwax

Although it doesn’t matter in what order you create objects, a Game instance is necessary for Level instances
- and subclasses thereof - to be useful.

Variables

• window – The pyglet window used to display the game.

• config – The configuration object used by this game.

• name – The name of this game. Used by get_settings_path().

• audio_context – The Synthizer context to route audio through.

• interface_sound_manager – A sound manager for playing interface sounds.

• music_sound_manager – A sound manager for playing music.

• ambiance_sound_manager – A sound manager for playing ambiances.

• levels – All the pushed earwax.Level instances.

• triggered_actions – The currently triggered earwax.Action instances.

• key_release_generators – The earwax.Action instances which returned gen-
erators, and need to do something on key release.

• mouse_release_generators – The earwax.Action instances which returned
generators, and need to do something on mouse release.

• joybutton_release_generators – The earwax.Action instances which re-
turned generators, and need to do something on joystick button release.

• event_matchers – The earwax.EventMatcher instances used by this object.

To take advantage of the pyglet events system, subclass earwax.Game, or earwax.
Level, and include events from pyglet.window.Window.

• joysticks – The list of joysticks that have been opened by this instance.

• thread_pool – An instance of ThreadPoolExecutor to use for threaded operations.

• tasks – A list of earwax.Task instances.

You can add tasks with the register_task() decorator, and remove them again with
the remove_task() method.

adjust_volume(amount: float)→ float
Adjust the master volume.

Parameters amount – The amount to add to the current volume.

after_run()→ None
Run code before the game exits.

This event is dispatched after the main game loop has ended.

By this point, synthizer has been shutdown, and there is nothing else to be done.

before_run()→ None
Do stuff before starting the main event loop.

This event is used by the run method, before any initial level is pushed, or any of the sound managers are
created.

This is the event to use if you’re planning to load configuration.

By this point, default events have been decorated, such as on_key_press and on_text. Also, we are inside
a synthizer.initialized context manager, so feel free to play sounds, and use self.audio_context.

142 Chapter 9. earwax

https://pyglet.readthedocs.io/en/latest/modules/window.html

Earwax

cancel(message: str = ’Cancelled’, level: Optional[earwax.level.Level] = None)→ None
Cancel with an optional message.

All this method does is output the given message, and either pop the most recent level, or reveal the given
level.

Parameters

• message – The message to output.

• level – The level to reveal.

If this value is None, then the most recent level will be popped.

change_volume(amount: float)→ Callable[[], None]
Return a callable that can be used to change the master volume.

Parameters amount – The amount to change the volume by.

clear_levels()→ None
Pop all levels.

The earwax.Level.on_pop() method will be called on every level that is popped.

click_mouse(button: int, modifiers: int)→ None
Simulate a mouse click.

This method is used for testing, to simulate first pressing, then releasing a mouse button.

Parameters

• button – One of the mouse button constants from pyglet.window.mouse.

• modifiers – One of the modifier constants from pyglet.window.key.

finalise_run()→ None
Perform the final steps of running the game.

• Dispatch the before_run() event.

• Call pyglet.app.run().

• Unload Cytolk.

• Dispatch the after_run() event.

get_default_buffer_cache()→ earwax.sound.BufferCache
Return the default buffer cache.

Parameters instance – The game to return the buffer cache for.

get_default_logger()→ logging.Logger
Return a logger.

get_settings_path()→ pathlib.Path
Get a path to store game settings.

Uses pyglet.resource.get_settings_path to get an appropriate settings path for this game.

init_sdl()→ None
Initialise SDL.

level
Get the most recently added earwax.Level instance.

If the stack is empty, None will be returned.

9.1. earwax package 143

https://pythonhosted.org/pyglet/api/pyglet.window.mouse-module.html
https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html

Earwax

on_close()→ None
Run code when closing the window.

Called when the window is closing.

This is the default event that is used by pyglet.window.Window.

By default, this method calls self.clear_levels(), to ensure any clean up code is called.

on_joybutton_press(joystick: pyglet.input.base.Joystick, button: int)→ bool
Handle the press of a joystick button.

This is the default handler that fires when a joystick button is pressed.

Parameters joystick – The joystick that emitted the event.

: param button: The button that was pressed.

on_joybutton_release(joystick: pyglet.input.base.Joystick, button: int)→ bool
Handle the release of a joystick button.

This is the default handler that fires when a joystick button is released.

Parameters joystick – The joystick that emitted the event.

: param button: The button that was pressed.

on_joyhat_motion(joystick: pyglet.input.base.Joystick, x: int, y: int)→ bool
Handle joyhat motions.

This is the default handler that fires when a hat is moved.

If the given position is the default position (0, 0), then any actions started by hat motions are stopped.

Parameters joystick – The joystick that emitted the event.

: param x: The left / right position of the hat.

: param y: The up / down position of the hat.

on_key_press(symbol: int, modifiers: int)→ bool
Handle a pressed key.

This is the default event that is used by pyglet.window.Window.

By default it iterates through self.level.actions, and searches for events that match the given
symbol and modifiers.

Parameters

• symbol – One of the key constants from pyglet.window.key.

• modifiers – One of the modifier constants from pyglet.window.key.

on_key_release(symbol: int, modifiers: int)→ bool
Handle a released key.

This is the default event that is used by pyglet.window.Window.

Parameters

• symbol – One of the key constants from pyglet.window.key.

• modifiers – One of the modifier constants from pyglet.window.key.

on_mouse_press(x: int, y: int, button: int, modifiers: int)→ bool
Handle a mouse button press.

This is the default event that is used by pyglet.window.Window.

144 Chapter 9. earwax

https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html
https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html
https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html
https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html

Earwax

By default, this method pretty much acts the same as on_key_press(), except it checks the discovered
actions for mouse buttons, rather than symbols.

Parameters

• x – The x coordinate of the mouse.

• y – The y coordinate of the mouse.

• button – One of the mouse button constants from pyglet.window.mouse.

• modifiers – One of the modifier constants from pyglet.window.key.

on_mouse_release(x: int, y: int, button: int, modifiers: int)→ bool
Handle a mouse button release.

This is the default event that is used by pyglet.window.Window.

By default, this method is pretty much the same as on_key_release(), except that it uses the discov-
ered actions mouse button information.

Parameters

• x – The x coordinate of the mouse.

• y – The y coordinate of the mouse.

• button – One of the mouse button constants from pyglet.window.mouse.

• modifiers – One of the modifier constants from pyglet.window.key.

open_joysticks()→ None
Open and attach events to all attached joysticks.

output(text: str, interrupt: bool = False)→ None
Output braille and / or speech.

The earwax configuration is used to determine what should be outputted.

Parameters

• text – The text to be spoken or output to a braille display.

• interrupt – If Whether or not to silence speech before outputting anything else.

poll_synthizer_events(dt: float)→ None
Poll the audio context for new synthizer events.

Parameters dt – The delta provided by Pyglet.

pop_level()→ None
Pop the most recent earwax.Level instance from the stack.

If there is a level underneath the current one, then events will be passed to it. Otherwise there will be an
empty stack, and events won’t get handled.

This method calls on_pop() on the popped level, and on_reveal() on the one below it.

pop_levels(n: int)→ None
Pop the given number of levels.

Parameters n – The number of times to call pop_level().

press_key(symbol: int, modifiers: int, string: Optional[str] = None, motion: Optional[int] = None)
→ None

Simulate a key press.

This method is used in tests.

9.1. earwax package 145

https://pythonhosted.org/pyglet/api/pyglet.window.mouse-module.html
https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html
https://pythonhosted.org/pyglet/api/pyglet.window.mouse-module.html
https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html

Earwax

First presses the given key combination, then releases it.

If string and motion are not None, then on_text, and on_text_motion events will also be fired.

Parameters

• symbol – One of the key constants from pyglet.window.key.

• modifiers – One of the modifier constants from pyglet.window.key.

• string – A string to be picked up by an on_text event handler..

• motion – A key to be picked up by an on_text_motion event handler.

push_action_menu(title: str = ’Actions’, **kwargs)→ earwax.menus.action_menu.ActionMenu
Push and return an action menu.

This method reduces the amount of code required to create a help menu:

@level.action(
'Help Menu', symbol=key.SLASH, modifiers=key.MOD_SHIFT

)
def help_menu() -> None:

game.push_action_menu()

Parameters

• title – The title of the new menu.

• kwargs – The extra keyword arguments to pass to the ActionMenu constructor.

push_credits_menu(title=’Game Credits’)→ earwax.menus.menu.Menu
Push a credits menu onto the stack.

This method reduces the amount of code needed to push a credits menu:

@level.action('Show credits', symbol=key.F1)
def show_credits() -> None:

game.push_credits_menu()

Parameters title – The title of the new menu.

push_level(level: earwax.level.Level)→ None
Push a level onto self.levels.

This ensures that all events will be handled by the provided level until another level is pushed on top, or
the current one is popped.

This method also dispatches the on_push() event on the provided level.

If the old level is not None, then the on_cover event is dispatched on the old level, with the new level as
the only argument.

Parameters level – The earwax.Level instance to push onto the stack.

register_task(interval: Callable[[], float]) → Callable[[Callable[[float], None]], ear-
wax.task.Task]

Decorate a function to use as a task.

This function allows you to convert a function into a Task instance, so you can add tasks by decoration:

146 Chapter 9. earwax

https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html
https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html

Earwax

@game.register_task(lambda: uniform(1.0, 5.0))
def task(dt: float) -> None:

'''A task.'''
print('Working: %.2f.' % dt)

task.start()

Parameters interval – The function to use for the interval.

remove_task(task: earwax.task.Task)→ None
Stop and remove a task.

Parameters task – The task to be stopped.

The task will first have its stop() method called, then it will be removed from the tasks
list.

replace_level(level: earwax.level.Level)→ None
Pop the current level, then push the new one.

This method uses pop_level(), and push_level(), so make sure you familiarise yourself with
what events will be called on each level.

Parameters level – The earwax.Level instance to push onto the stack.

reveal_level(Level: earwax.level.Level)→ int
Pop levels until level is revealed.

This method returned the number of levels which were popped.

Parameters level – The level to reveal.

run(window: pyglet.window.BaseWindow, mouse_exclusive: bool = True, initial_level: Op-
tional[earwax.level.Level] = None)→ None
Run the game.

By default, this method will perform the following actions in order:

• Iterate over all the found event types on pyglet.window.Window, and decorate them with
EventMatcher instances. This means Game and Level subclasses can take full advantage of
all event types by simply adding methods with the correct names to their classes.

• Load cytolk.

• Initialise SDL2.

• Set the requested mouse exclusive mode on the provided window.

• call open_joysticks().

• If no audio_context is present, enter a synthizer.initialized contextmanager.

• Call the setup_run() method.

• Call the finalise_run() method.

Parameters

• window – The pyglet window that will form the game’s interface.

• mouse_exclusive – The mouse exclusive setting for the window.

• initial_level – A level to push onto the stack.

9.1. earwax package 147

Earwax

set_volume(value: float)→ None
Set the master volume to a specific value.

Parameters value – The new volume.

setup()→ None
Set up things needed for the game.

This event is dispatched just inside the synthizer context manager, before the various sound managers have
been created.

This event is perfect for loading configurations ETC.

setup_run(initial_level: Optional[earwax.level.Level])→ None
Get ready to run the game.

This method dispatches the setup() event, and sets up sound managers.

Finally, it pushes the initial level, if necessary.

Parameters initial_level – The initial level to be pushed.

start_action(a: earwax.action.Action)→ Optional[Generator[None, None, None]]
Start an action.

If the action has no interval, it will be ran straight away. Otherwise, it will be added to self.
triggered_actions, and only ran if enough time has elapsed since the last run.

This method is used when a trigger fires - such as a mouse button or key sequence being pressed - that
triggers an action.

Parameters a – The earwax.Action instance that should be started.

start_rumble(joystick: pyglet.input.base.Joystick, value: float, duration: int)→ None
Start a simple rumble.

Parameters

• joystick – The joystick to rumble.

• value – A value from 0.0 to 1.0, which is the power of the rumble.

• duration – The duration of the rumble in milliseconds.

stop()→ None
Close self.window.

If self.window is None, then :class:earwax.GameNotRunning‘ will be raised.

stop_action(a: earwax.action.Action)→ None
Unschedule an action.

The provided action will be removed from triggered_actions.

This method is called when the user stops doing something that previously triggered an action, such as
releasing a key or a mouse button

Parameters a – The earwax.Action instance that should be stopped.

stop_rumble(joystick: pyglet.input.base.Joystick)→ None
Cancel a rumble.

Parameters joystick – The joystick you want to rumble.

exception earwax.game.GameNotRunning
Bases: Exception

148 Chapter 9. earwax

Earwax

This game is not running.

earwax.game_board module

Provides the GameBoard class.

class earwax.game_board.GameBoard(game: Game, size: earwax.point.Point[int][int],
tile_builder: Callable[[earwax.point.Point], T], coor-
dinates: earwax.point.Point[int][int] = NOTHING)

Bases: earwax.level.Level, typing.Generic

A useful starting point for making board games.

Tiles can be populated with the populate() method. This method will be called as part of the default
on_push() event.

Variables

• size – The size of this board.

This value will be the maximum possible coordinates on the board, with (0, 0, 0) being
the minimum.

• tile_builder – The function that is used to build the GameBoard.

The return value of this function should be of type T.

• coordinates – The coordinates of the player on this board.

• tiles – All the tiles generated by populate().

• populated_points – All the points that have been populated by populate().

current_tile
Return the current tile.

Gets the tile at the current coordinates.

If no such tile is found, None is returned.

get_tile(p: earwax.point.Point[int][int])→ T
Return the tile at the given point.

If there is no tile found, then NoSuchTile is raised.

Parameters p – The coordinates of the desired tile.

move(direction: earwax.point.PointDirections, wrap: bool = False)→ Callable[[], None]
Return a callable that can be used to move the player.

For example:

board = GameBoard(...)

board.action(
'Move left', symbol=key.LEFT

)(board.move(PointDirections.west))

Parameters

• direction – The direction that this action should move the player in.

• wrap – If True, then coordinates that are out of range will result in wrapping around to
the other side of the board..

9.1. earwax package 149

Earwax

on_move_fail(direction: earwax.point.PointDirections)→ None
Run code when the player fails to move.

An event that is dispatched when a player fails to move in the given direction.

Parameters direction – The direction the player tried to move in.

on_move_success(direction: earwax.point.PointDirections)→ None
Handle a successful move.

An event that is dispatched by move().

Parameters direction – The direction the player just moved.

on_push()→ None
Populate the board.

populate()→ None
Fill the board.

exception earwax.game_board.NoSuchTile
Bases: Exception

No such tile exists.

This exception is raised by earwax.GameBoard.get_tile() when no tile is found at the given coordi-
nates.

earwax.hat_directions module

Provides hat motions to be used as shortcuts.

earwax.input_modes module

Provides the InputModes enumeration.

class earwax.input_modes.InputModes
Bases: enum.Enum

The possible input modes.

This enumeration is used to show appropriate triggers in earwax.ActionMenu instances.

Variables

• keyboard – The user is entering commands via keyboard or mouse.

• controller – The user is using a games controller.

controller = 1

keyboard = 0

earwax.level module

Provides classes for working with levels.

class earwax.level.IntroLevel(game: Game, level: earwax.level.Level, sound_path: path-
lib.Path, skip_after: Optional[float] = None, looping: bool =
False, sound_manager: Optional[earwax.sound.SoundManager]
= NOTHING, play_kwargs: Dict[str, Any] = NOTHING)

Bases: earwax.level.Level

150 Chapter 9. earwax

Earwax

An introduction level.

This class represents a level that plays some audio, before optionally replacing itself in the level stack with
self.level.

If you want it to be possible to skip this level, add a trigger for the skip() action.

Variables

• level – The level that will replace this one.

• sound_path – The sound to play when this level is pushed.

• skip_after – An optional number of seconds to wait before skipping this level.

If this value is None, then the level will not automatically skip itself, and you will have to
provide some other means of getting past it.

• looping – Whether or not the playing sound should loop.

If this value is True, then skip_after must be None, otherwise AssertionError
will be raised.

• sound_manager – The sound manager to use to play the sound.

If this value is None, then the sound will not be playing.

This value default to earwax.Game.interface_sound_manager.

• play_kwargs – Extra arguments to pass to the play() method of the
sound_manager.

When the on_push() event is dispatched, an error will be raised if this dictionary contains
a looping key, as 2 looping arguments would be passed to self.sound_manager.
play_path.

• sound – The sound object which represents the playing sound.

If this value is None, then the sound will not be playing.

get_default_sound_manager()→ Optional[earwax.sound.SoundManager]
Return a suitable sound manager.

on_pop()→ None
Destroy any created sound().

on_push()→ None
Run code when this level has been pushed.

Starts playing self.sound_path, and optionally schedules an automatic skip.

skip()→ Generator[None, None, None]
Skip this level.

Replaces this level in the level stack with self.level.

class earwax.level.Level(game: Game)
Bases: earwax.mixins.RegisterEventMixin, earwax.action_map.ActionMap

A level in a Game instance.

An object that contains event handlers. Can be pushed and pulled from within a Game instance.

While the Game object is the centre of a game, Level instances are where the magic happens.

9.1. earwax package 151

Earwax

If the included action() and motion() decorators aren’t enough for your needs, and you want to harness
the full power of the Pyglet event system, simply subclass earwax.Level, and include the requisite events.
The underlying Game object will do all the heavy lifting for you, by way of the EventMatcher framework.

Variables

• game – The game this level is bound to.

• actions – A list of actions which can be called on this object. To define more, use the
action() decorator.

• motions – The defined motion events. To define more, use the motion() decorator.

• ambiances – The ambiances for this level.

• tracks – The tracks (musical or otherwise) that play while this level is top of the stack.

motion(motion: int)→ Callable[[MotionFunctionType], MotionFunctionType]
Add a handler to motions.

For example:

@level.motion(key.MOTION_LEFT)
def move_left():

...

This is the method used by earwax.Editor, to make text editable, and earwax.Menu, to make menus
searchable.

Parameters motion – One of the motion constants from pyglet.window.key.

on_cover(level: earwax.level.Level)→ None
Code to run when this level has been covered by a new one.

on_pop()→ None
Run code when this level is popped.

This event is called when a level has been popped from the level stack of a game.

on_push()→ None
Run code when this level is pushed.

This event is called when a level has been pushed onto the level stack of a game.

on_reveal()→ None
Code to be run when this level is exposed.

This event is called when the level above this one in the stack has been popped, thus revealing this level.

on_text_motion(motion: int)→ None
Call the appropriate motion.

The motions dictionary will be consulted, and if the provided motion is found, then that function will be
called.

This is the default event that is used by pyglet.window.Window.

Parameters motion – One of the motion constants from pyglet.window.key.

start_ambiances()→ None
Start all the ambiances on this instance.

start_tracks()→ None
Start all the tracks on this instance.

152 Chapter 9. earwax

https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html
https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html

Earwax

stop_ambiances()→ None
Stop all the ambiances on this instance.

stop_tracks()→ None
Stop all the tracks on this instance.

earwax.mixins module

Provides various mixin classes for used with other objects.

class earwax.mixins.DismissibleMixin(dismissible: bool = True)
Bases: object

Make any Level subclass dismissible.

Variables dismissible – Whether or not it should be possible to dismiss this level.

dismiss()→ None
Dismiss the currently active level.

By default, when used by earwax.Menu and earwax.Editor, this method is called when the escape
key is pressed, and only if self.dismissible evaluates to True.

The default implementation simply calls pop_level() on the attached earwax.Game instance, and
announces the cancellation.

class earwax.mixins.DumpLoadMixin
Bases: object

A mixin that allows any object to be dumped to and loaded from a dictionary.

It is worth noting that only instance variables which have type hints (and thus end up in the
__annotations__ dictionary) will be dumped and loaded.

Also, any instance variables whose name starts with an underscore (_) will be ignored.

To dump an instance, use the dump() method, and to load, use the load() constructor.

The __allowed_basic_types__ list holds all the types which will be dumped without any modification.

By default, the only collection types that are allowed are list, and dict.

If you wish to exclude attributes from being dumped or loaded, create a __excluded_attributes__ list,
and add all names there.

dump()→ Dict[str, Any]
Dump this instance as a dictionary.

classmethod from_file(f: TextIO, *args)→ Any
Return an instance from a file object.

Parameters

• f – A file which has already been opened.

• args – Extra positional arguments to pass to the load constructor.

classmethod from_filename(filename: pathlib.Path, *args)→ Any
Load an instance from a filename.

Parameters filename – The path to load from.

get_dump_value(type_: Type[CT_co], value: Any)→ Any
Get a value for dumping.

9.1. earwax package 153

Earwax

Parameters value – The value that is present on the instance.

classmethod get_load_value(expected_type: Type[CT_co], value: Any)→ Any
Return a loaded value.

In the event that the dumped value represents a instance of earwax.mixins.DumpLoadValue, the
dictionary must have been returned by earwax.mixins.DumpLoadMixin.dump(), so it contains
both the dumped value, and the type annotation.

This prevents errors with Union types representing multiple subclasses.

If the type of the provided value is found in the __allowed_basic_types__ list, it will be returned
as-is. This is also true if the value is an enumeration value.

If the type of the provided value is list, then each element will be passed through this method and a list
of the loaded values returned.

If the type of the value is dict, one of two things will occur:

• If expected_type is also a dict, then the given value will have its keys and values loaded with
this function.

• If expected_type is also a subclass of earwax.mixins.DumpLoadMixin, then it will be
loaded with that class’s load method.

• If neither of these things are true, RuntimeError will be raised.

Parameters

• expected_type – The type from the __annotations__ dictionary.

• value – The raw value to load.

classmethod load(data: Dict[str, Any], *args)→ Any
Load and return an instance from the provided data.

It is worth noting that only keys that are also found in the __attrs_attrs__ list, or
__annotations__ dictionary, and not found in the __excluded_attribute_names__ list will
be loaded. All others are ignored.

Parameters

• data – The data to load from.

• args – Extra positional arguments to pass to the constructor.

save(filename: pathlib.Path)→ None
Write this object to the provided filename.

Parameters filename – The path to the file to dump to.

class earwax.mixins.RegisterEventMixin
Bases: pyglet.event.EventDispatcher

Allow registering and binding events in one function.

register_and_bind(func: EventType)→ EventType
Register and bind a new event.

This is the same as:

level.register_event_type('f')

@level.event
(continues on next page)

154 Chapter 9. earwax

Earwax

(continued from previous page)

def f() -> None:
pass

Parameters func – The function whose name will be registered, and which will be bound to
this instance.

register_event(func: EventType)→ str
Register an event type from a function.

This function uses func.__name__ to register an event type, eliminating possible typos in event names.

Parameters func – The function whose name will be used.

class earwax.mixins.TitleMixin(title: Union[str, TitleFunction])
Bases: object

Add a title to any Level subclass.

Variables title – The title of this instance.

If this value is a callable, it should return a string which will be used as the title.

get_title()→ str
Return the proper title of this object.

If self.title is a callable, its return value will be returned.

earwax.networking module

Provides classes for networking.

exception earwax.networking.AlreadyConnected
Bases: earwax.networking.NetworkingConnectionError

Already connected.

Attempted to call connect() on an already connected NetworkConnection instance.

exception earwax.networking.AlreadyConnecting
Bases: earwax.networking.NetworkingConnectionError

Already connecting.

An attempt was made to call connect() on an NetworkConnection instance which is already attempting
to connect.

class earwax.networking.ConnectionStates
Bases: enum.Enum

Various states that NetworkConnection classes can be in.

Variables

• not_connected – The connection’s connect() method has not yet been called.

• connecting – The connection is still being established.

• connected – A connection has been established.

• disconnected – This connection is no longer connected (but was at some point).

• error – There was an error establishing a connection.

9.1. earwax package 155

Earwax

connected = 2

connecting = 1

disconnected = 3

error = 4

not_connected = 0

class earwax.networking.NetworkConnection
Bases: earwax.mixins.RegisterEventMixin

Represents a single outbound connection.

You can read data by providing an event handler for on_data(), and write data with the send() method.

Variables

• socket – The raw socket this instance uses for communication.

• state – The state this connection is in.

close()→ None
Close this connection.

Disconnect self.socket, and call shutdown() to clean up..

connect(hostname: str, port: int)→ None
Open a new connection.

Connect self.socket to the provided hostname and port.

Parameters

• hostname – The hostname to connect to.

• port – The port to connect on.

on_connect()→ None
Deal with the connection being opened.

This event is dispatched when text is first received from self.socket, since I’ve not found a better way
to know when the socket is properly open.

on_data(data: bytes)→ None
Handle incoming data.

An event which is dispatched whenever data is received from self.socket.

on_disconnect()→ None
Handle the connection closing.

Dispatched when self.socket has disconnected.

A socket disconnect is defined by the socket in question receiving an empty string.

on_error(e: Exception)→ None
Handle a connection error.

This event is dispatched when there is an error establishing a connection.

Parameters e – The exception that was raised.

poll(dt: float)→ None
Check if any data has been received.

Poll self.socket for anything that has been received since the last time this function ran.

156 Chapter 9. earwax

Earwax

This function will be scheduled by connect(), and unscheduled by shutdown(), when no more data
is received from the socket.

If this connection is not connected yet (I.E.: you called this function yourself), then earwax.
NotConnectedYet will be raised.

send(data: bytes)→ None
Send some data over this connection.

Sends some data to self.socket.

If this object is not connected yet, then NotConnectedYet will be raised.

Parameters data – The data to send to the socket.

Must end with '\r\n'.

shutdown()→ None
Shutdown this server.

Unschedule self.poll, set self.socket to None, and reset self.state to earwax.
ConnectionStates.not_connected.

exception earwax.networking.NetworkingConnectionError
Bases: Exception

Base class for connection errors.

exception earwax.networking.NotConnectedYet
Bases: earwax.networking.NetworkingConnectionError

Tried to send data on a connection which is not yet connected.

earwax.point module

Provides the Point class.

class earwax.point.Point(x: T, y: T, z: T)
Bases: typing.Generic

A point in 3d space.

angle_between(other: earwax.point.Point)→ float
Return the angle between two points.

Parameters other – The other point to get the angle to.

coordinates
Return self.x, self.y, and self.z as a tuple.

copy()→ earwax.point.Point[~T][T]
Copy this instance.

Returns a Point instance with duplicate x and y values.

directions_to(other: earwax.point.Point)→ earwax.point.PointDirections
Return the direction between this point and other.

Parameters other – The point to get directions to.

distance_between(other: earwax.point.Point)→ float
Return the distance between two points.

Parameters other – The point to measure the distance to.

9.1. earwax package 157

Earwax

floor()→ earwax.point.Point[int][int]
Return a version of this object with both coordinates floored.

in_direction(angle: float, distance: float = 1.0)→ earwax.point.Point[float][float]
Return the coordinates in the given direction.

Parameters

• angle – The direction of travel.

• distance – The distance to travel.

classmethod origin()→ earwax.point.Point[int][int]
Return Point(0, 0, 0).

classmethod random(a: earwax.point.Point[int][int], b: earwax.point.Point[int][int]) → Point-
Type

Return a random point between a, and b.

Parameters

• a – The first point.

• b – The second point.

class earwax.point.PointDirections
Bases: enum.Enum

Point directions enumeration.

Most of the possible directions between two Point instances.

There are no vertical directions defined, although they would be easy to include.

east = 3

here = 0

north = 1

northeast = 2

northwest = 8

south = 5

southeast = 4

southwest = 6

west = 7

earwax.reverb module

Reverb module.

class earwax.reverb.Reverb(gain: float = 1.0, late_reflections_delay: float = 0.01,
late_reflections_diffusion: float = 1.0, late_reflections_hf_reference:
float = 500.0, late_reflections_hf_rolloff: float = 0.5,
late_reflections_lf_reference: float = 200.0, late_reflections_lf_rolloff:
float = 1.0, late_reflections_modulation_depth: float = 0.01,
late_reflections_modulation_frequency: float = 0.5, mean_free_path:
float = 0.02, t60: float = 1.0)

Bases: object

A reverb preset.

158 Chapter 9. earwax

Earwax

This class can be used to make reverb presets, which you can then upgrade to full reverbs by way of the
make_reverb() method.

make_reverb(context: object)→ object
Return a synthizer reverb built from this object.

All the settings contained by this object will be present on the new reverb.

Parameters context – The synthizer context to use.

earwax.rumble_effects module

Provides various rumble effect classes.

Please note:

When we talk about a rumble value, we mean a value from 0.0 (nothing), to 1.0 (full on).

In reality, values on the lower end can barely be felt with some controllers.

class earwax.rumble_effects.RumbleEffect(start_value: float, increase_interval: float,
increase_value: float, peak_duration: float,
peak_value: float, decrease_interval: float, de-
crease_value: float, end_value: float)

Bases: object

A rumble effect.

Instances of this class create rumble “waves”, with a start, a climb in effect to an eventual peak, then, after some
time at the peak, a gradual drop back to stillness.

For example, you could have an effect that started at 0.5 (half power), then climbed in increments of 0.1 every
10th of a second to a peak value of 1.0 (full power), then stayed there for 1 second, before reducing back down
to 0.7 (70% power), with 0.1 decrements every 0.2 seconds.

The code for this effect would be:

effect: RumbleEffect = RumbleEffect(
0.5, # start_value
0.1, # increase_interval
0.1, # increase_value
1., # peak_duration
1.0, # peak_value
0.2, # decrease_interval
0.1, # decrease_value
0.7, # end_value

)

The start() method returns an instance of StaggeredPromise. This gives you the ability to save your
effect, then use it at will:

effect: RumbleEffect = RumbleEffect(
0.2, # start_value
0.3, # increase_interval
0.1, # increase_value
1.5, # peak_duration
1.0, # peak_value
0.3, # decrease_interval
0.1, # decrease_value
0.1, # end_value

(continues on next page)

9.1. earwax package 159

Earwax

(continued from previous page)

)
...
promise: StaggeredPromise = effect.start(game, 0)
promise.run()

Variables

• start_value – The initial rumble value.

• increase_interval – How many seconds should elapse between each increase.

• increase_value – How much should be added to the rumble value each increase.

• peak_duration – How many seconds the peak_value rumble should be felt.

• peak_value – The highest rumble value this effect will achieve.

• decrease_interval – The number of seconds between decreases.

• decrease_value – How much should be subtracted from the rumble value each de-
crease.

• end_value – The last value that will be felt.

start(game: Game, joystick: pyglet.input.base.Joystick) → ear-
wax.promises.staggered_promise.StaggeredPromise

Start this effect.

Parameters

• game – The game which will provide the start_rumble(), and stop_rumble()
methods.

• joystick – The joystick to rumble.

class earwax.rumble_effects.RumbleSequence(lines: List[earwax.rumble_effects.RumbleSequenceLine])
Bases: object

A sequence of rumbles.

Variables lines – A list of rumble lines that make up effect.

start(game: Game, joystick: pyglet.input.base.Joystick) → ear-
wax.promises.staggered_promise.StaggeredPromise

Start this effect.

Parameters

• game – The game which will provide the start_rumble(), and stop_rumble()
methods.

• joystick – The joystick to rumble.

class earwax.rumble_effects.RumbleSequenceLine(power: float, duration: int, after: Op-
tional[float])

Bases: object

A line of rumble.

This class should be used in conjunction with the RumbleSequence class.

Variables

• power – The power of the rumble.

160 Chapter 9. earwax

Earwax

• duration – The duration of the rumble.

• after – The time to wait before proceeding to the next line.

If this value is None, then no time will elapse.

Set this value to None for the last line in the sequence, to avoid the promise suspending
unnecessarily.

earwax.sdl module

Provides function for working with sdl2.

exception earwax.sdl.SdlError
Bases: Exception

An error in SDL.

earwax.sdl.maybe_raise(value: int)→ None
Possibly raise SdlError.

Parameters value – The value of an sdl function.

If this value is -1, then an error will be raised.

earwax.sdl.sdl_raise()→ None
Raise the most recent SDL error.

earwax.sound module

Provides sound-related functions and classes.

exception earwax.sound.AlreadyDestroyed
Bases: earwax.sound.SoundError

This sound has already been destroyed.

class earwax.sound.BufferCache(max_size: int)
Bases: object

A cache for buffers.

Variables

• max_size – The maximum size (in bytes) the cache will be allowed to grow before prun-
ing.

For reference, 1 KB is 1024, 1 MB is 1024 ** 2, and 1 GB is 1024 ** 3.

• buffer_uris – The URIs of the buffers that are loaded. Least recently used first.

• buffers – The loaded buffers.

• current_size – The current size of the cache.

destroy_all()→ None
Destroy all the buffers cached by this instance.

get_buffer(protocol: str, path: str)→ object
Load and return a Buffer instance.

Buffers are cached in the buffers dictionary, so if there is already a buffer with the given protocol and
path, it will be returned. Otherwise, a new buffer will be created, and added to the dictionary:

9.1. earwax package 161

Earwax

cache: BufferCache = BufferCache(1024 ** 2 * 512) # 512 MB max.
assert isinstance(

cache.get_buffer('file', 'sound.wav'), synthizer.Buffer
)
True.
Now it is cached:
assert cache.get_buffer(

'file', 'sound.wav'
) is cache.get_buffer(

'file', 'sound.wav'
)
True.

If getting a new buffer would grow the cache past the point of max_size, the least recently used buffer
will be removed and destroyed.

It is not recommended that you destroy buffers yourself. Let the cache do that for you.

At present, both arguments are passed to synthizer.Buffer.from_stream.

Parameters

• protocol – One of the protocols supported by Synthizer.

As far as I know, currently only 'file' works.

• path – The path to whatever data your buffer will contain.

get_size(buffer: object)→ int
Return the size of the provided buffer.

Parameters buffer – The buffer to get the size of.

get_uri(protocol: str, path: str)→ str
Return a URI for the given protocol and path.

This meth is used by get_buffer(). :param protocol: The protocol to use.

Parameters path – The path to use.

pop_buffer()→ object
Remove and return the least recently used buffer.

prune_buffers()→ None
Prune old buffers.

This function will keep going, until either there is only ‘ buffer left, or current_size has shrunk to
less than max_size.

class earwax.sound.BufferDirectory(buffer_cache: earwax.sound.BufferCache, path: path-
lib.Path, glob: Optional[str] = None, thread_pool: Op-
tional[concurrent.futures._base.Executor] = None)

Bases: object

An object which holds a directory of synthizer.Buffer instances.

For example:

b: BufferDirectory = BufferDirectory(
cache, Path('sounds/weapons/cannons'), glob='*.wav'

)
Get a random cannon buffer:
print(b.random_buffer())

(continues on next page)

162 Chapter 9. earwax

https://synthizer.github.io/

Earwax

(continued from previous page)

Get a random fully qualified path from the directory.
print(b.random_path())

You can select single buffer instances from the buffers dictionary, or a random buffer with the
random_buffer() method.

You can select single Path instances from the paths dictionary, or a random path with the random_path()
method.

Variables

• cache – The buffer cache to use.

• path – The path to load audio files from.

• glob – The glob to use when loading files.

• buffers – A dictionary of of filename: Buffer pairs.

• paths – A dictionary of filename: Path pairs.

buffers_default()→ Dict[str, object]
Return the default value.

Populates the buffers and paths dictionaries.

random_buffer()→ object
Return a random buffer.

Returns a random buffer from self.buffers.

random_path()→ pathlib.Path
Return a random path.

Returns a random path from self.paths.

exception earwax.sound.NoCache
Bases: earwax.sound.SoundManagerError

This sound manager was created with no cache.

class earwax.sound.Sound(context: object, generator: object, buffer: Optional[object] =
None, gain: float = 1.0, looping: bool = False, position:
Union[float, earwax.point.Point, None] = None, reverb: Optional[object]
= None, on_destroy: Optional[Callable[[Sound], None]] = None,
on_finished: Optional[Callable[[Sound], None]] = None, on_looped:
Optional[Callable[[Sound], None]] = None, keep_around: bool =
NOTHING)

Bases: object

The base class for all sounds.

Variables

• context – The synthizer context to connect to.

• generator – The sound generator.

• buffer – The buffer that feeds generator.

If this value is None, then this sound is a stream.

• gain – The gain of the new sound.

• loop – Whether or not this sound should loop.

9.1. earwax package 163

Earwax

• position – The position of this sound.

If this value is None, this sound will not be panned.

If this value is an earwax.Point value, then this sound will be a 3d sound, and the
position of its source will be set to the coordinates of the given point.

If this value is a number, this sound will be panned in 2d, and the value will be a panning
scalar, which should range between -1.0 (hard left), and 1.0 (hard right).

• on_destroy – A function to be called when this sound is destroyed.

• on_finished – A function to be called when this sound has finished playing, and
looping evaluates to False.

The timing of this event should not be relied upon.

• on_looped – A function to be called each time this sound loops.

The timing of this event should not be relied upon.

• keep_around – Whether or not this sound should be kept around when it has finished
playing.

If this value evaluates to True, it is the same as setting the on_finished attribute to
destroy().

• source – The synthizer source to play through.

check_destroyed()→ None
Do nothing if this sound has not yet been destroyed.

If it has been destroyed, AlreadyDestroyed will be raised.

connect_reverb(reverb: object)→ None
Connect a reverb to the source of this sound.

Parameters reverb – The reverb object to connect.

destroy()→ None
Destroy this sound.

This method will destroy the attached generator and source.

If this sound has already been destroyed, then AlreadyDestroyed will be raised.

destroy_generator()→ None
Destroy the generator.

This method will leave the source intact, and will raise AlreadyDestroyed if the generator is still
valid.

destroy_source()→ None
Destroy the attached source.

If the source has already been destroyed, AlreadyDestroyed will be raised.

destroyed
Return whether or not this sound has been destroyed.

disconnect_reverb()→ None
Disconnect the connected reverb object.

classmethod from_path(context: object, buffer_cache: earwax.sound.BufferCache, path: path-
lib.Path, **kwargs)→ earwax.sound.Sound

Create a sound that plays the given path.

164 Chapter 9. earwax

Earwax

Parameters

• context – The synthizer context to use.

• cache – The buffer cache to load buffers from.

• path – The path to play.

If the given path is a directory, then a random file from that directory will be chosen.

Parm kwargs Extra keyword arguments to pass to the Sound constructor.

classmethod from_stream(context: object, protocol: str, path: str, **kwargs) → ear-
wax.sound.Sound

Create a sound that streams from the given arguments.

Parameters

• context – The synthizer context to use.

• protocol – The protocol argument for synthizer.StreamingGenerator.

• path – The path parameter for synthizer.StreamingGenerator.

is_stream
Return True if this sound is being streamed.

To determine whether or not a sound is being streamed, we check if self.buffer is None.

pause()→ None
Pause this sound.

paused
Return whether or not this sound is paused.

play()→ None
Resumes this sound after a call to pause().

reset_source()→ object
Return an appropriate source.

restart()→ None
Start this sound playing from the beginning.

set_gain(gain: float)→ None
Change the gain of this sound.

Parameters gain – The new gain value.

set_looping(looping: bool)→ None
Set whether or not this sound should loop.

Parameters looping – Whether or not to loop.

set_position(position: Union[float, earwax.point.Point, None])→ None
Change the position of this sound.

If the provided position is of a different type than the current one, then the underlying source object
will need to changee. This will probably cause audio stuttering.

Parameters position – The new position.

exception earwax.sound.SoundError
Bases: Exception

The base exception for all sounds exceptions.

9.1. earwax package 165

Earwax

class earwax.sound.SoundManager(context: object, buffer_cache: Op-
tional[earwax.sound.BufferCache] = NOTHING, name:
str = ’Untitled sound manager’, default_gain: float = 1.0,
default_looping: bool = False, default_position: Union[float,
earwax.point.Point, None] = None, default_reverb: Op-
tional[object] = None)

Bases: object

An object to hold sounds.

Variables

• context – The synthizer context to use.

• cache – The buffer cache to get buffers from.

• name – An optional name to set this manager aside from other sound managers when de-
bugging.

• default_gain – The default gain attribute for sounds created by this manager.

• default_looping – The default looping attribute for sounds created by this manager.

• default_position – The default position attribute for sounds created by this man-
ager.

• default_reverb – The default reverb attribute for sounds created by this manager.

• sounds – A list of sounds that are playing.

destroy_all()→ None
Destroy all the sounds associated with this manager.

play_path(path: pathlib.Path, **kwargs)→ earwax.sound.Sound
Play a sound from a path.

The resulting sound will be added to sounds and returned.

Parameters

• path – The path to play.

• kwargs – Extra keyword arguments to pass to the constructor of earwax.Sound.

This value will be updated by the update_kwargs() method.

play_stream(protocol: str, path: str, **kwargs)→ earwax.sound.Sound
Stream a sound.

The resulting sound will be added to sounds and returned.

For full descriptions of the protocol, and path arguments, check the synthizer documentation for
StreamingGenerator.

Parameters

• protocol – The protocol to use.

• path – The path to use.

• kwargs – Extra keyword arguments to pass to the constructor of the earwax.Sound
class.

This value will be updated by the update_kwargs() method.

register_sound(sound: earwax.sound.Sound)→ None
Register a sound with this instance.

166 Chapter 9. earwax

Earwax

Parameters sound – The sound to register.

remove_sound(sound: earwax.sound.Sound)→ None
Remove a sound from the sounds list.

Parameters sound – The sound that will be removed

update_kwargs(kwargs: Dict[str, Any])→ None
Update the passed kwargs with the defaults from this manager.

Parameters kwargs – The dictionary of keyword arguments to update.

The setdefault method will be used with each of the default values from this object..

exception earwax.sound.SoundManagerError
Bases: Exception

The base class for all sound manager errors.

earwax.speech module

Provides the tts object.

You can use this object to output speech through the currently active screen reader:

from earwax import tts
tts.output('Hello, Earwax.')
tts.speak('Hello, speech.')
tts.braille('Hello, braille.')

NOTE: Since version 2020-10-11, Earwax uses Cytolk for its TTS needs.

In addition to this change, there is now an extra speech <earwax.EarwaxConfig.speech configuration sec-
tion, which can be set to make the output() method behave how you’d like.

earwax.task module

Provides the Task class.

class earwax.task.Task(interval: Callable[[], float], func: Callable[[float], None])
Bases: object

A repeating task.

This class can be used to perform a task at irregular intervals.

By using a function as the interval, you can make tasks more random.

Parameters

• interval – The function to determine the interval between task runs.

• func – The function to run as the task.

• running – Whether or not a task is running.

start(immediately: bool = False)→ None
Start this task.

Schedules func to run after whatever interval is returned by interval.

Every time it runs, it will be rescheduled, until stop() is called.

9.1. earwax package 167

https://pypi.org/project/cytolk/

Earwax

Parameters immediately – If True, then self.funcwill run as soon as it has been sched-
uled.

stop()→ None
Stop this task from running.

earwax.track module

Provides the Track class.

class earwax.track.Track(protocol: str, path: str, track_type: earwax.track.TrackTypes)
Bases: object

A looping sound or piece of music.

A track that plays while a earwax.Level object is top of the levels stack.

Variables

• protocol – The protocol argument to pass to synthizer.
StreamingGenerator``.

• path – The path argument to pass to synthizer.StreamingGenerator.

• track_type – The type of this track.

This value determines which sound manager an instance will be connected to.

• sound – The currently playing sound instance.

This value is initialised as part of the play() method.

classmethod from_path(path: pathlib.Path, type: earwax.track.TrackTypes) → ear-
wax.track.Track

Return a new instance from a path.

Parameters

• path – The path to build the track from.

If this value is a directory, a random file will be selected.

• type – The type of the new track.

play(manager: earwax.sound.SoundManager, **kwargs)→ None
Play this track on a loop.

Parameters

• manager – The sound manager to play through.

• kwargs – The extra keyword arguments to send to the given manager’s
play_stream() method.

stop()→ None
Stop this track playing.

class earwax.track.TrackTypes
Bases: enum.Enum

The type of a Track instance.

Variables

168 Chapter 9. earwax

Earwax

• ambiance – An ambiance which will never moved, such as the background sound for a
map.

This type should not be confused with the earwax.Ambiance class, which describes an
ambiance which can be moved around the sound field.

• music – A piece of background music.

ambiance = 0

music = 1

earwax.types module

Provides various type classes used by Earwax.

earwax.utils module

Provides various utility functions used by Earwax.

earwax.utils.english_list(items: List[str], empty: str = ’Nothing’, sep: str = ’, ’, and_: str = ’and
’)→ str

Given a list of strings, returns a string representing them as a list.

For example:

english_list([]) == 'Nothing'
english_list(['bananas']) == 'bananas'
english_list(['apples', 'bananas']) == 'apples, and bananas'
english_list(

['apples', 'bananas', 'oranges']
) == 'apples, bananas, and oranges'
english_list(['tea', 'coffee'], and_='or ') == 'tea, or coffee'

Parameters

• items – The items to turn into a string.

• empty – The string to return if items is empty.

• sep – The string to separate list items with.

• and – The string to show before the last item in the list.

earwax.utils.format_timedelta(td: datetime.timedelta, *args, **kwargs)→ str
Given a timedelta td, return it as a human readable time.

For example:

td = timedelta(days=400, hours=2, seconds=3)
format_timedelta(

td
) == '1 year, 1 month, 4 days, 2 hours, and 3 seconds'

Note: It is assumed that a month always contains 31 days.

Parameters

• td – The time delta to work with.

• args – The extra positional arguments to pass to english_list().

9.1. earwax package 169

Earwax

• kwargs – The extra keyword arguments to pass onto english_list().

earwax.utils.nearest_square(n: int, allow_higher: bool = False)→ int
Given a number n, find the nearest square number.

If allow_higher evaluates to True, return the first square higher than n. Otherwise, return the last square
below n.

For example:

nearest_square(5) == 2 # 2 * 2 == 4
nearest_square(24, allow_higher=True) == 5 # 5 * 5 == 25
nearest_square(16) == 4
nearest_square(16, allow_higher=True) == 4

Parameters n – The number whose nearest square should be returned.

earwax.utils.pluralise(n: int, single: str, multiple: Optional[str] = None)→ str
If n == 1, return single. Otherwise return multiple.

If multiple is None, it will become single + 's'.

For example:

pluralise(1, 'axe') == 'axe'
pluralise(2, 'axe') == 'axes'
pluralise(1, 'person', multiple='people') == 'person'
pluralise(2, 'person', multiple='people') == 'people'
pluralise(0, 'person', multiple='people') == 'people'

Parameters

• n – The number of items we are dealing with.

• single – The name of the thing when there is only 1.

• multiple – The name of things when there are numbers other than 1.

earwax.utils.random_file(path: pathlib.Path)→ pathlib.Path
Call recursively until a file is reached.

Parameters path – The path to start with.

earwax.vault_file module

Provides the VaultFile class.

exception earwax.vault_file.IncorrectVaultKey
Bases: Exception

The wrong key was given, and the file cannot be decrypted.

class earwax.vault_file.VaultFile(entries: Dict[str, Union[bytes, List[bytes]]] = NOTHING)
Bases: object

A class for restoring hidden files.

This class is used for loading files hidden by the earwax vault command.

Most of the time, you want to create instances with the from_path() constructor.

170 Chapter 9. earwax

Earwax

To add files, use the add_path() method.

Variables entries – The files which you are saving.

The format of this dictionary is {label: data}, where data is the contents of the file you
added.

Labels don’t necessarily have to be the names of the files they represent. They can be whatever
you like.

add_path(p: Union[pathlib.Path, Generator[pathlib.Path, None, None]], label: Optional[str] = None)
→ str

Add a file or files to this vault.

This method will add the contents of the given file to the entries dictionary, using the given label as the
key.

Parameters

• p – The path to load.

If the provided value is a generator, the resulting dictionary value will be a list of the
contents of every file in that iterator.

If the provided value is a directory, then the resulting dictionary value will be a list of every
file (not subdirectory) in that directory.

• label – The label that will be given to this entry.

This value will be the key in the entries dictionary.

If None is provided, a string representation of the path will be used.

If None is given, and the p is not a single Path instance, RuntimeErrorwill be raised.

classmethod from_path(filename: pathlib.Path, key: bytes)→ earwax.vault_file.VaultFile
Load a series of files and return a VaultFile instance.

Given a path to a data file, and the correct key, load a series of files and return a VaultFile instance.

If the key is invalid, earwax.InvalidFaultKey will be raised.

Parameters

• filename – The name of the file to load.

This must be a data file, generated by a previous call to earwax.VaultFile.save(),
not a yaml file as created by the earwax vault new command.

• key – The decryption key for the given file.

save(filename: pathlib.Path, key: bytes)→ None
Save this instance’s entries to a file.

Path filename The data file to save to.

The contents of this file will be encrypted with the given key, and will be binary.

Parameters key – The key to use to encrypt the data.

This key must either have been generated by cryptography.fernet.Fernet.
generate_key, or be of the correct format.

earwax.walking_directions module

Provides the walking_directions dictionary.

9.1. earwax package 171

Earwax

earwax.yaml module

Makes the importing of yaml easier on systems that don’t support CDumper.

earwax.yaml.dump(data, stream=None, Dumper=<class ’yaml.dumper.Dumper’>, **kwds)
Serialize a Python object into a YAML stream. If stream is None, return the produced string instead.

earwax.yaml.load(stream, Loader=None)
Parse the first YAML document in a stream and produce the corresponding Python object.

class earwax.yaml.CDumper(stream, default_style=None, default_flow_style=False, canon-
ical=None, indent=None, width=None, allow_unicode=None,
line_break=None, encoding=None, explicit_start=None, ex-
plicit_end=None, version=None, tags=None, sort_keys=True)

Bases: yaml._yaml.CEmitter, yaml.serializer.Serializer, yaml.representer.
Representer, yaml.resolver.Resolver

class earwax.yaml.CLoader(stream)
Bases: yaml._yaml.CParser, yaml.constructor.Constructor, yaml.resolver.
Resolver

9.1.3 Module contents

The Earwax game engine.

Earwax

This package is heavily inspired by Flutter.

Usage

• Begin with a Game object:

from earwax import Game, Level
g = Game()

• Create a level:

l = Level()

• Add actions to allow the player to do things:

@l.action(...)
def action():

pass

• Create a Pyglet window:

from pyglet.window import Window
w = Window(caption='Earwax Game')

• Run the game you have created:

g.run(w)

There are ready made Level classes for creating menus, and editors.

172 Chapter 9. earwax

https://flutter.dev/

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

173

Earwax

174 Chapter 10. Indices and tables

Python Module Index

e
earwax, 172
earwax.action, 126
earwax.action_map, 128
earwax.ambiance, 129
earwax.cmd, 36
earwax.cmd.constants, 32
earwax.cmd.game_level, 32
earwax.cmd.keys, 33
earwax.cmd.main, 33
earwax.cmd.project, 34
earwax.cmd.project_credit, 34
earwax.cmd.subcommands, 32
earwax.cmd.subcommands.configure_earwax,

29
earwax.cmd.subcommands.conversation_tree,

29
earwax.cmd.subcommands.game, 30
earwax.cmd.subcommands.game_map, 30
earwax.cmd.subcommands.init_project, 30
earwax.cmd.subcommands.story, 30
earwax.cmd.subcommands.vault, 31
earwax.cmd.variable, 35
earwax.config, 130
earwax.configuration, 132
earwax.conversation_level, 134
earwax.credit, 136
earwax.dialogue_tree, 137
earwax.die, 137
earwax.editor, 138
earwax.event_matcher, 141
earwax.game, 141
earwax.game_board, 149
earwax.hat_directions, 150
earwax.input_modes, 150
earwax.level, 150
earwax.mapping, 51
earwax.mapping.box, 36
earwax.mapping.box_level, 41

earwax.mapping.door, 46
earwax.mapping.map_editor, 47
earwax.mapping.portal, 50
earwax.menus, 76
earwax.menus.action_menu, 64
earwax.menus.config_menu, 66
earwax.menus.file_menu, 69
earwax.menus.menu, 71
earwax.menus.menu_item, 74
earwax.menus.reverb_editor, 75
earwax.mixins, 153
earwax.networking, 155
earwax.point, 157
earwax.promises, 91
earwax.promises.base, 86
earwax.promises.staggered_promise, 88
earwax.promises.threaded_promise, 89
earwax.reverb, 158
earwax.rumble_effects, 159
earwax.sdl, 161
earwax.sound, 161
earwax.speech, 167
earwax.story, 111
earwax.story.context, 95
earwax.story.edit_level, 96
earwax.story.play_level, 100
earwax.story.world, 103
earwax.task, 167
earwax.track, 168
earwax.types, 169
earwax.utils, 169
earwax.vault_file, 170
earwax.walking_directions, 171
earwax.yaml, 172

175

Earwax

176 Python Module Index

Index

A
Action (class in earwax.action), 126
action() (earwax.action_map.ActionMap method),

128
action_menu() (ear-

wax.menus.action_menu.ActionMenu method),
65

action_menu() (earwax.menus.ActionMenu method),
80

action_title() (ear-
wax.menus.action_menu.ActionMenu method),
65

action_title() (earwax.menus.ActionMenu
method), 80

ActionMap (class in earwax.action_map), 128
ActionMenu (class in earwax.menus), 80
ActionMenu (class in earwax.menus.action_menu), 64
actions_menu() (earwax.story.play_level.PlayLevel

method), 100
actions_menu() (earwax.story.PlayLevel method),

123
activate() (earwax.mapping.box_level.BoxLevel

method), 41
activate() (earwax.mapping.BoxLevel method), 56
activate() (earwax.menus.Menu method), 77
activate() (earwax.menus.menu.Menu method), 71
activate() (earwax.story.play_level.PlayLevel

method), 100
activate() (earwax.story.PlayLevel method), 123
activate_handler() (ear-

wax.menus.config_menu.ConfigMenu method),
66

activate_handler() (earwax.menus.ConfigMenu
method), 83

add_action() (earwax.story.edit_level.EditLevel
method), 96

add_action() (earwax.story.EditLevel method), 119
add_actions() (earwax.action_map.ActionMap

method), 129

add_ambiance() (earwax.story.edit_level.EditLevel
method), 96

add_ambiance() (earwax.story.EditLevel method),
119

add_box() (earwax.mapping.box_level.BoxLevel
method), 42

add_box() (earwax.mapping.BoxLevel method), 56
add_boxes() (earwax.mapping.box_level.BoxLevel

method), 42
add_boxes() (earwax.mapping.BoxLevel method), 57
add_default_actions() (ear-

wax.mapping.box_level.BoxLevel method),
42

add_default_actions() (ear-
wax.mapping.BoxLevel method), 57

add_help() (in module earwax.cmd.main), 33
add_item() (earwax.menus.Menu method), 77
add_item() (earwax.menus.menu.Menu method), 72
add_path() (earwax.vault_file.VaultFile method), 171
add_room() (earwax.story.StoryWorld method), 115
add_room() (earwax.story.world.StoryWorld method),

107
add_subcommands() (in module earwax.cmd.main),

33
add_submenu() (earwax.menus.Menu method), 77
add_submenu() (earwax.menus.menu.Menu method),

72
add_template() (ear-

wax.mapping.map_editor.MapEditorContext
method), 49

add_template() (ear-
wax.mapping.MapEditorContext method),
63

adjust_value() (ear-
wax.menus.reverb_editor.ReverbEditor
method), 75

adjust_value() (earwax.menus.ReverbEditor
method), 86

adjust_volume() (earwax.game.Game method), 142
after_run() (earwax.game.Game method), 142

177

Earwax

all_objects() (earwax.story.StoryWorld method),
115

all_objects() (earwax.story.world.StoryWorld
method), 107

AlreadyConnected, 155
AlreadyConnecting, 155
AlreadyDestroyed, 161
Ambiance (class in earwax.ambiance), 129
ambiance (earwax.track.TrackTypes attribute), 169
ambiance_menu() (earwax.story.edit_level.EditLevel

method), 96
ambiance_menu() (earwax.story.EditLevel method),

119
ambiance_volume (ear-

wax.configuration.SoundConfig attribute),
134

ambiances_menu() (ear-
wax.story.edit_level.EditLevel method), 96

ambiances_menu() (earwax.story.EditLevel
method), 120

AnchorPoints (class in ear-
wax.mapping.map_editor), 47

angle_between() (earwax.point.Point method), 157
area (earwax.mapping.box.BoxBounds attribute), 40
area (earwax.mapping.BoxBounds attribute), 55

B
backward() (earwax.story.edit_level.ObjectPositionLevel

method), 99
backward() (earwax.story.ObjectPositionLevel

method), 122
before_run() (earwax.game.Game method), 142
before_run() (earwax.story.context.StoryContext

method), 95
before_run() (earwax.story.StoryContext method),

125
beginning_of_line() (earwax.editor.Editor

method), 138
bottom_back_left (ear-

wax.mapping.map_editor.AnchorPoints at-
tribute), 47

bottom_back_right (ear-
wax.mapping.map_editor.AnchorPoints at-
tribute), 47

bottom_front_left (ear-
wax.mapping.map_editor.AnchorPoints at-
tribute), 47

bottom_front_right (ear-
wax.mapping.map_editor.AnchorPoints at-
tribute), 47

Box (class in earwax.mapping), 51
Box (class in earwax.mapping.box), 36
box_menu() (earwax.mapping.map_editor.MapEditor

method), 48

box_menu() (earwax.mapping.MapEditor method), 62
box_sound() (earwax.mapping.map_editor.MapEditor

method), 48
box_sound() (earwax.mapping.MapEditor method),

62
box_sounds() (ear-

wax.mapping.map_editor.MapEditor method),
48

box_sounds() (earwax.mapping.MapEditor method),
62

BoxBounds (class in earwax.mapping), 54
BoxBounds (class in earwax.mapping.box), 39
BoxError, 40
boxes_menu() (ear-

wax.mapping.map_editor.MapEditor method),
48

boxes_menu() (earwax.mapping.MapEditor method),
62

BoxLevel (class in earwax.mapping), 56
BoxLevel (class in earwax.mapping.box_level), 41
BoxLevelData (class in earwax.cmd.game_level), 32
BoxPoint (class in earwax.mapping.map_editor), 47
BoxTemplate (class in earwax.mapping.map_editor),

47
BoxTypes (class in earwax.mapping), 55
BoxTypes (class in earwax.mapping.box), 40
braille (earwax.configuration.SpeechConfig at-

tribute), 134
BufferCache (class in earwax.sound), 161
BufferDirectory (class in earwax.sound), 162
buffers_default() (earwax.sound.BufferDirectory

method), 163
build_inventory() (ear-

wax.story.play_level.PlayLevel method),
101

build_inventory() (earwax.story.PlayLevel
method), 123

build_story() (in module ear-
wax.cmd.subcommands.story), 30

builder_menu() (earwax.story.edit_level.EditLevel
method), 96

builder_menu() (earwax.story.EditLevel method),
120

C
calculate_coordinates() (ear-

wax.mapping.box_level.BoxLevel method),
42

calculate_coordinates() (ear-
wax.mapping.BoxLevel method), 57

CallResponseSettings (class in ear-
wax.conversation_level), 134

cancel() (earwax.game.Game method), 142
cancel() (earwax.promises.base.Promise method), 86

178 Index

Earwax

cancel() (earwax.promises.Promise method), 94
cancel() (earwax.promises.staggered_promise.StaggeredPromise

method), 88
cancel() (earwax.promises.StaggeredPromise

method), 93
cancel() (earwax.promises.threaded_promise.ThreadedPromise

method), 90
cancel() (earwax.promises.ThreadedPromise

method), 92
cancel() (earwax.story.edit_level.ObjectPositionLevel

method), 99
cancel() (earwax.story.ObjectPositionLevel method),

122
cancelled (earwax.promises.base.PromiseStates at-

tribute), 87
cancelled (earwax.promises.PromiseStates attribute),

91
category (earwax.story.world.WorldState attribute),

111
category (earwax.story.WorldState attribute), 119
CDumper (class in earwax.yaml), 172
change_volume() (earwax.game.Game method), 143
check() (earwax.promises.threaded_promise.ThreadedPromise

method), 90
check() (earwax.promises.ThreadedPromise method),

92
check_destroyed() (earwax.sound.Sound method),

164
classes (earwax.story.RoomObject attribute), 113
classes (earwax.story.world.RoomObject attribute),

105
clear() (earwax.editor.Editor method), 138
clear() (earwax.story.edit_level.ObjectPositionLevel

method), 99
clear() (earwax.story.ObjectPositionLevel method),

122
clear_levels() (earwax.game.Game method), 143
clear_value() (ear-

wax.menus.config_menu.ConfigMenu method),
66

clear_value() (earwax.menus.ConfigMenu
method), 83

click_mouse() (earwax.game.Game method), 143
CLoader (class in earwax.yaml), 172
close() (earwax.mapping.Box method), 52
close() (earwax.mapping.box.Box method), 37
close() (earwax.networking.NetworkConnection

method), 156
cmd_help() (in module earwax.cmd.main), 33
cmd_main() (in module earwax.cmd), 36
cmd_main() (in module earwax.cmd.main), 33
code (earwax.cmd.game_level.GameLevelScript at-

tribute), 32
collapse_item() (ear-

wax.conversation_level.ConversationEditor
method), 135

collide() (earwax.mapping.box_level.BoxLevel
method), 42

collide() (earwax.mapping.BoxLevel method), 57
compile_vault() (in module ear-

wax.cmd.subcommands.vault), 31
complain_box() (ear-

wax.mapping.map_editor.MapEditor method),
48

complain_box() (earwax.mapping.MapEditor
method), 62

Config (class in earwax.config), 130
ConfigMenu (class in earwax.menus), 82
ConfigMenu (class in earwax.menus.config_menu), 66
configure_earwax() (ear-

wax.story.context.StoryContext method),
95

configure_earwax() (earwax.story.StoryContext
method), 126

configure_earwax() (in module ear-
wax.cmd.subcommands.configure_earwax),
29

configure_music() (ear-
wax.story.context.StoryContext method),
95

configure_music() (earwax.story.StoryContext
method), 126

configure_reverb() (ear-
wax.story.edit_level.EditLevel method), 96

configure_reverb() (earwax.story.EditLevel
method), 120

ConfigValue (class in earwax.config), 131
connect() (earwax.networking.NetworkConnection

method), 156
connect_reverb() (earwax.sound.Sound method),

164
connected (earwax.networking.ConnectionStates at-

tribute), 155
connecting (earwax.networking.ConnectionStates at-

tribute), 156
ConnectionStates (class in earwax.networking),

155
contains_point() (earwax.mapping.Box method),

52
contains_point() (earwax.mapping.box.Box

method), 37
controller (earwax.input_modes.InputModes at-

tribute), 150
ConversationBase (class in ear-

wax.conversation_level), 134
ConversationEditor (class in ear-

wax.conversation_level), 134
ConversationSection (class in ear-

Index 179

Earwax

wax.conversation_level), 136
ConversationTree (class in ear-

wax.conversation_level), 136
coordinates (earwax.point.Point attribute), 157
copy() (earwax.editor.Editor method), 138
copy() (earwax.point.Point method), 157
copy_action() (in module ear-

wax.cmd.subcommands.story), 30
copy_actions() (in module ear-

wax.cmd.subcommands.story), 30
copy_ambiances() (in module ear-

wax.cmd.subcommands.story), 31
copy_path() (in module ear-

wax.cmd.subcommands.story), 31
could_fit() (earwax.mapping.Box method), 52
could_fit() (earwax.mapping.box.Box method), 37
create_box() (ear-

wax.mapping.map_editor.MapEditor method),
48

create_box() (earwax.mapping.MapEditor method),
62

create_exit() (earwax.story.edit_level.EditLevel
method), 97

create_exit() (earwax.story.EditLevel method), 120
create_exit() (earwax.story.world.WorldRoom

method), 110
create_exit() (earwax.story.WorldRoom method),

118
create_fitted() (earwax.mapping.Box class

method), 52
create_fitted() (earwax.mapping.box.Box class

method), 37
create_menu() (earwax.story.edit_level.EditLevel

method), 97
create_menu() (earwax.story.EditLevel method), 120
create_object() (earwax.story.edit_level.EditLevel

method), 97
create_object() (earwax.story.EditLevel method),

120
create_object() (earwax.story.world.WorldRoom

method), 110
create_object() (earwax.story.WorldRoom

method), 118
create_room() (earwax.story.edit_level.EditLevel

method), 97
create_room() (earwax.story.EditLevel method), 120
create_row() (earwax.mapping.Box class method),

52
create_row() (earwax.mapping.box.Box class

method), 37
create_story() (in module ear-

wax.cmd.subcommands.story), 31
Credit (class in earwax.credit), 136
credit_menu() (earwax.story.context.StoryContext

method), 95
credit_menu() (earwax.story.StoryContext method),

126
credits_menu() (earwax.story.context.StoryContext

method), 95
credits_menu() (earwax.story.StoryContext

method), 126
current_item (ear-

wax.conversation_level.ConversationEditor
attribute), 135

current_item (earwax.menus.Menu attribute), 77
current_item (earwax.menus.menu.Menu attribute),

72
current_tile (earwax.game_board.GameBoard at-

tribute), 149
CurrentBox (class in earwax.mapping), 60
CurrentBox (class in earwax.mapping.box_level), 45
cut() (earwax.editor.Editor method), 138
cycle_category() (ear-

wax.story.play_level.PlayLevel method),
101

cycle_category() (earwax.story.PlayLevel
method), 123

cycle_object() (earwax.story.play_level.PlayLevel
method), 101

cycle_object() (earwax.story.PlayLevel method),
123

D
decorate() (earwax.promises.staggered_promise.StaggeredPromise

class method), 88
decorate() (earwax.promises.StaggeredPromise

class method), 93
decrement (earwax.menus.reverb_editor.ValueAdjustments

attribute), 75
default (earwax.menus.reverb_editor.ValueAdjustments

attribute), 75
default_cache_size (ear-

wax.configuration.SoundConfig attribute),
134

default_item_activate_sound (ear-
wax.configuration.MenuConfig attribute),
133

default_item_select_sound (ear-
wax.configuration.MenuConfig attribute),
133

delete() (earwax.story.edit_level.EditLevel method),
97

delete() (earwax.story.EditLevel method), 120
delete_ambiance() (ear-

wax.story.edit_level.EditLevel method), 97
delete_ambiance() (earwax.story.EditLevel

method), 120
depth (earwax.mapping.box.BoxBounds attribute), 40

180 Index

Earwax

depth (earwax.mapping.BoxBounds attribute), 55
describe_current_box() (ear-

wax.mapping.box_level.BoxLevel method),
42

describe_current_box() (ear-
wax.mapping.BoxLevel method), 57

describe_room() (earwax.story.edit_level.EditLevel
method), 97

describe_room() (earwax.story.EditLevel method),
120

destination (earwax.story.RoomExit attribute), 112
destination (earwax.story.world.RoomExit at-

tribute), 104
destroy() (earwax.sound.Sound method), 164
destroy_all() (earwax.sound.BufferCache method),

161
destroy_all() (earwax.sound.SoundManager

method), 166
destroy_generator() (earwax.sound.Sound

method), 164
destroy_source() (earwax.sound.Sound method),

164
destroyed (earwax.sound.Sound attribute), 164
DialogueLine (class in earwax.dialogue_tree), 137
DialogueTree (class in earwax.dialogue_tree), 137
Die (class in earwax.die), 137
directions_to() (earwax.point.Point method), 157
disconnect_reverb() (earwax.sound.Sound

method), 164
disconnected (earwax.networking.ConnectionStates

attribute), 156
dismiss() (earwax.mixins.DismissibleMixin method),

153
DismissibleMixin (class in earwax.mixins), 153
dispatch() (earwax.event_matcher.EventMatcher

method), 141
distance_between() (earwax.point.Point method),

157
do_action() (earwax.story.play_level.PlayLevel

method), 101
do_action() (earwax.story.PlayLevel method), 123
do_delete() (earwax.editor.Editor method), 139
do_next() (earwax.promises.staggered_promise.StaggeredPromise

method), 88
do_next() (earwax.promises.StaggeredPromise

method), 93
done (earwax.promises.base.PromiseStates attribute),

87
done (earwax.promises.PromiseStates attribute), 91
done() (earwax.promises.base.Promise method), 86
done() (earwax.promises.Promise method), 94
done() (earwax.story.edit_level.ObjectPositionLevel

method), 99
done() (earwax.story.ObjectPositionLevel method),

122
Door (class in earwax.mapping), 61
Door (class in earwax.mapping.door), 46
down() (earwax.story.edit_level.ObjectPositionLevel

method), 99
down() (earwax.story.ObjectPositionLevel method),

122
drop_object() (earwax.story.play_level.PlayLevel

method), 101
drop_object() (earwax.story.PlayLevel method),

123
drop_object_menu() (ear-

wax.story.play_level.PlayLevel method),
101

drop_object_menu() (earwax.story.PlayLevel
method), 123

droppable (earwax.story.RoomObjectTypes attribute),
114

droppable (earwax.story.world.RoomObjectTypes at-
tribute), 105

dump() (earwax.config.Config method), 130
dump() (earwax.config.ConfigValue method), 132
dump() (earwax.mixins.DumpLoadMixin method), 153
dump() (earwax.story.StoryWorld method), 115
dump() (earwax.story.world.StoryWorld method), 107
dump() (in module earwax.yaml), 172
dump_path() (in module earwax.configuration), 134
DumpablePoint (class in earwax.story), 111
DumpablePoint (class in earwax.story.world), 103
DumpableReverb (class in earwax.story), 111
DumpableReverb (class in earwax.story.world), 103
DumpLoadMixin (class in earwax.mixins), 153

E
earwax (module), 172
earwax.action (module), 126
earwax.action_map (module), 128
earwax.ambiance (module), 129
earwax.cmd (module), 36
earwax.cmd.constants (module), 32
earwax.cmd.game_level (module), 32
earwax.cmd.keys (module), 33
earwax.cmd.main (module), 33
earwax.cmd.project (module), 34
earwax.cmd.project_credit (module), 34
earwax.cmd.subcommands (module), 32
earwax.cmd.subcommands.configure_earwax

(module), 29
earwax.cmd.subcommands.conversation_tree

(module), 29
earwax.cmd.subcommands.game (module), 30
earwax.cmd.subcommands.game_map (module),

30

Index 181

Earwax

earwax.cmd.subcommands.init_project
(module), 30

earwax.cmd.subcommands.story (module), 30
earwax.cmd.subcommands.vault (module), 31
earwax.cmd.variable (module), 35
earwax.config (module), 130
earwax.configuration (module), 132
earwax.conversation_level (module), 134
earwax.credit (module), 136
earwax.dialogue_tree (module), 137
earwax.die (module), 137
earwax.editor (module), 138
earwax.event_matcher (module), 141
earwax.game (module), 141
earwax.game_board (module), 149
earwax.hat_directions (module), 150
earwax.input_modes (module), 150
earwax.level (module), 150
earwax.mapping (module), 51
earwax.mapping.box (module), 36
earwax.mapping.box_level (module), 41
earwax.mapping.door (module), 46
earwax.mapping.map_editor (module), 47
earwax.mapping.portal (module), 50
earwax.menus (module), 76
earwax.menus.action_menu (module), 64
earwax.menus.config_menu (module), 66
earwax.menus.file_menu (module), 69
earwax.menus.menu (module), 71
earwax.menus.menu_item (module), 74
earwax.menus.reverb_editor (module), 75
earwax.mixins (module), 153
earwax.networking (module), 155
earwax.point (module), 157
earwax.promises (module), 91
earwax.promises.base (module), 86
earwax.promises.staggered_promise (mod-

ule), 88
earwax.promises.threaded_promise (mod-

ule), 89
earwax.reverb (module), 158
earwax.rumble_effects (module), 159
earwax.sdl (module), 161
earwax.sound (module), 161
earwax.speech (module), 167
earwax.story (module), 111
earwax.story.context (module), 95
earwax.story.edit_level (module), 96
earwax.story.play_level (module), 100
earwax.story.world (module), 103
earwax.task (module), 167
earwax.track (module), 168
earwax.types (module), 169
earwax.utils (module), 169

earwax.vault_file (module), 170
earwax.walking_directions (module), 171
earwax.yaml (module), 172
earwax_bug() (earwax.story.context.StoryContext

method), 95
earwax_bug() (earwax.story.StoryContext method),

126
earwax_config() (ear-

wax.menus.config_menu.ConfigMenu method),
67

earwax_config() (earwax.menus.ConfigMenu
method), 83

earwax_credit() (earwax.credit.Credit class
method), 137

EarwaxConfig (class in earwax.configuration), 132
east (earwax.point.PointDirections attribute), 158
echo() (earwax.editor.Editor method), 139
echo_current_character() (ear-

wax.editor.Editor method), 139
edit_action() (earwax.story.edit_level.EditLevel

method), 97
edit_action() (earwax.story.EditLevel method), 120
edit_ambiance() (earwax.story.edit_level.EditLevel

method), 97
edit_ambiance() (earwax.story.EditLevel method),

120
edit_convo() (in module ear-

wax.cmd.subcommands.conversation_tree),
29

edit_map() (in module ear-
wax.cmd.subcommands.game_map), 30

edit_object_class() (ear-
wax.story.edit_level.EditLevel method), 97

edit_object_class() (earwax.story.EditLevel
method), 120

edit_object_class_names() (ear-
wax.story.edit_level.EditLevel method), 97

edit_object_class_names() (ear-
wax.story.EditLevel method), 120

edit_object_classes() (ear-
wax.story.edit_level.EditLevel method), 97

edit_object_classes() (earwax.story.EditLevel
method), 120

edit_story() (in module ear-
wax.cmd.subcommands.story), 31

edit_value() (ear-
wax.menus.reverb_editor.ReverbEditor
method), 75

edit_value() (earwax.menus.ReverbEditor method),
86

edit_volume_multiplier() (ear-
wax.story.edit_level.EditLevel method), 97

edit_volume_multiplier() (ear-
wax.story.EditLevel method), 120

182 Index

Earwax

EditLevel (class in earwax.story), 119
EditLevel (class in earwax.story.edit_level), 96
Editor (class in earwax.editor), 138
EditorConfig (class in earwax.configuration), 133
editors (earwax.configuration.EarwaxConfig at-

tribute), 133
empty (earwax.mapping.box.BoxTypes attribute), 40
empty (earwax.mapping.BoxTypes attribute), 55
end() (earwax.menus.Menu method), 77
end() (earwax.menus.menu.Menu method), 72
end_of_line() (earwax.editor.Editor method), 139
english_list() (in module earwax.utils), 169
error (earwax.networking.ConnectionStates attribute),

156
error (earwax.promises.base.PromiseStates attribute),

87
error (earwax.promises.PromiseStates attribute), 91
error() (earwax.promises.base.Promise method), 86
error() (earwax.promises.Promise method), 94
EventMatcher (class in earwax.event_matcher), 141
exits (earwax.story.world.WorldStateCategories

attribute), 111
exits (earwax.story.WorldStateCategories attribute),

119
expand_item() (ear-

wax.conversation_level.ConversationEditor
method), 135

F
FileMenu (class in earwax.menus), 81
FileMenu (class in earwax.menus.file_menu), 69
finalise_run() (earwax.game.Game method), 143
Finisher (class in earwax.conversation_level), 136
finisher_menu() (ear-

wax.conversation_level.ConversationEditor
method), 135

float() (earwax.editor.TextValidator class method),
140

floor() (earwax.point.Point method), 157
format_timedelta() (in module earwax.utils), 169
forward() (earwax.story.edit_level.ObjectPositionLevel

method), 99
forward() (earwax.story.ObjectPositionLevel

method), 122
from_credits() (earwax.menus.Menu class

method), 77
from_credits() (earwax.menus.menu.Menu class

method), 72
from_file() (earwax.mixins.DumpLoadMixin class

method), 153
from_filename() (earwax.mixins.DumpLoadMixin

class method), 153
from_path() (earwax.ambiance.Ambiance class

method), 129

from_path() (earwax.sound.Sound class method),
164

from_path() (earwax.track.Track class method), 168
from_path() (earwax.vault_file.VaultFile class

method), 171
from_stream() (earwax.sound.Sound class method),

165

G
Game (class in earwax.game), 141
GameBoard (class in earwax.game_board), 149
GameLevel (class in earwax.cmd.game_level), 32
GameLevelScript (class in earwax.cmd.game_level),

32
GameNotRunning, 148
get_angle_between() (ear-

wax.mapping.box_level.BoxLevel method),
43

get_angle_between() (earwax.mapping.BoxLevel
method), 57

get_boxes() (earwax.mapping.box_level.BoxLevel
method), 43

get_boxes() (earwax.mapping.BoxLevel method), 58
get_buffer() (earwax.sound.BufferCache method),

161
get_children() (ear-

wax.dialogue_tree.DialogueTree method),
137

get_containing_box() (ear-
wax.mapping.box_level.BoxLevel method),
43

get_containing_box() (ear-
wax.mapping.BoxLevel method), 58

get_current_box() (ear-
wax.mapping.box_level.BoxLevel method),
43

get_current_box() (earwax.mapping.BoxLevel
method), 58

get_default_buffer_cache() (ear-
wax.game.Game method), 143

get_default_config_file() (ear-
wax.story.context.StoryContext method),
95

get_default_config_file() (ear-
wax.story.StoryContext method), 126

get_default_context() (ear-
wax.mapping.map_editor.MapEditor method),
48

get_default_context() (ear-
wax.mapping.MapEditor method), 62

get_default_id() (ear-
wax.mapping.map_editor.MapEditorBox
method), 49

Index 183

Earwax

get_default_input_mode() (ear-
wax.menus.action_menu.ActionMenu method),
65

get_default_input_mode() (ear-
wax.menus.ActionMenu method), 81

get_default_label() (ear-
wax.mapping.map_editor.BoxTemplate
method), 48

get_default_logger() (earwax.game.Game
method), 143

get_default_logger() (ear-
wax.story.context.StoryContext method),
95

get_default_logger() (ear-
wax.story.StoryContext method), 126

get_default_reverb() (ear-
wax.menus.reverb_editor.ReverbEditor
method), 75

get_default_reverb() (ear-
wax.menus.ReverbEditor method), 86

get_default_room_id() (ear-
wax.story.world.WorldState method), 111

get_default_room_id() (earwax.story.WorldState
method), 119

get_default_settings() (ear-
wax.menus.reverb_editor.ReverbEditor
method), 75

get_default_settings() (ear-
wax.menus.ReverbEditor method), 86

get_default_sound_manager() (ear-
wax.level.IntroLevel method), 151

get_default_state() (ear-
wax.story.context.StoryContext method),
95

get_default_state() (earwax.story.StoryContext
method), 126

get_description() (ear-
wax.story.world.WorldRoom method), 110

get_description() (earwax.story.WorldRoom
method), 118

get_dump_value() (ear-
wax.mixins.DumpLoadMixin method), 153

get_filename() (in module ear-
wax.cmd.subcommands.story), 31

get_gain() (earwax.story.play_level.PlayLevel
method), 101

get_gain() (earwax.story.PlayLevel method), 123
get_initial_position() (ear-

wax.story.edit_level.ObjectPositionLevel
method), 99

get_initial_position() (ear-
wax.story.ObjectPositionLevel method),
122

get_load_value() (ear-

wax.mixins.DumpLoadMixin class method),
154

get_main_menu() (ear-
wax.story.context.StoryContext method),
95

get_main_menu() (earwax.story.StoryContext
method), 126

get_name() (earwax.story.world.WorldRoom method),
110

get_name() (earwax.story.WorldRoom method), 118
get_nearest_point() (earwax.mapping.Box

method), 53
get_nearest_point() (earwax.mapping.box.Box

method), 38
get_objects() (earwax.story.play_level.PlayLevel

method), 101
get_objects() (earwax.story.PlayLevel method),

123
get_option_name() (ear-

wax.menus.config_menu.ConfigMenu method),
67

get_option_name() (earwax.menus.ConfigMenu
method), 83

get_rooms() (earwax.story.edit_level.EditLevel
method), 97

get_rooms() (earwax.story.EditLevel method), 121
get_settings_path() (earwax.game.Game

method), 143
get_size() (earwax.sound.BufferCache method), 162
get_subsection_name() (ear-

wax.menus.config_menu.ConfigMenu method),
67

get_subsection_name() (ear-
wax.menus.ConfigMenu method), 83

get_tile() (earwax.game_board.GameBoard
method), 149

get_title() (earwax.menus.menu_item.MenuItem
method), 74

get_title() (earwax.menus.MenuItem method), 79
get_title() (earwax.mixins.TitleMixin method), 155
get_type() (earwax.cmd.variable.Variable method),

35
get_uri() (earwax.sound.BufferCache method), 162
get_window_caption() (ear-

wax.story.context.StoryContext method),
95

get_window_caption() (ear-
wax.story.StoryContext method), 126

goto_room() (earwax.story.edit_level.EditLevel
method), 97

goto_room() (earwax.story.EditLevel method), 121

H
handle_action() (ear-

184 Index

Earwax

wax.menus.action_menu.ActionMenu method),
65

handle_action() (earwax.menus.ActionMenu
method), 81

handle_bool() (ear-
wax.menus.config_menu.ConfigMenu method),
67

handle_bool() (earwax.menus.ConfigMenu
method), 84

handle_box() (earwax.mapping.box_level.BoxLevel
method), 43

handle_box() (earwax.mapping.BoxLevel method),
58

handle_door() (earwax.mapping.Box method), 53
handle_door() (earwax.mapping.box.Box method),

38
handle_float() (ear-

wax.menus.config_menu.ConfigMenu method),
67

handle_float() (earwax.menus.ConfigMenu
method), 84

handle_int() (ear-
wax.menus.config_menu.ConfigMenu method),
67

handle_int() (earwax.menus.ConfigMenu method),
84

handle_path() (ear-
wax.menus.config_menu.ConfigMenu method),
67

handle_path() (earwax.menus.ConfigMenu
method), 84

handle_portal() (earwax.mapping.Box method), 53
handle_portal() (earwax.mapping.box.Box

method), 38
handle_string() (ear-

wax.menus.config_menu.ConfigMenu method),
67

handle_string() (earwax.menus.ConfigMenu
method), 84

hat_alphabet (earwax.configuration.EditorConfig
attribute), 133

hat_direction_to_string() (ear-
wax.menus.action_menu.ActionMenu method),
65

hat_direction_to_string() (ear-
wax.menus.ActionMenu method), 81

hat_down() (earwax.editor.Editor method), 139
hat_up() (earwax.editor.Editor method), 139
height (earwax.mapping.box.BoxBounds attribute), 40
height (earwax.mapping.BoxBounds attribute), 55
here (earwax.point.PointDirections attribute), 158
home() (earwax.conversation_level.ConversationEditor

method), 135
home() (earwax.menus.Menu method), 77

home() (earwax.menus.menu.Menu method), 72

I
id_box() (earwax.mapping.map_editor.MapEditor

method), 49
id_box() (earwax.mapping.MapEditor method), 62
in_direction() (earwax.point.Point method), 158
IncorrectVaultKey, 170
increment (earwax.menus.reverb_editor.ValueAdjustments

attribute), 75
init_project() (in module ear-

wax.cmd.subcommands.init_project), 30
init_sdl() (earwax.game.Game method), 143
initial_room (earwax.story.StoryWorld attribute),

115
initial_room (earwax.story.world.StoryWorld

attribute), 107
InputModes (class in earwax.input_modes), 150
insert_text() (earwax.editor.Editor method), 139
int() (earwax.editor.TextValidator class method), 140
IntroLevel (class in earwax.level), 150
InvalidLabel, 48
inventory_menu() (ear-

wax.story.play_level.PlayLevel method),
101

inventory_menu() (earwax.story.PlayLevel
method), 124

is_door (earwax.mapping.Box attribute), 53
is_door (earwax.mapping.box.Box attribute), 38
is_droppable (earwax.story.RoomObject attribute),

113
is_droppable (earwax.story.world.RoomObject at-

tribute), 105
is_edge() (earwax.mapping.box.BoxBounds method),

40
is_edge() (earwax.mapping.BoxBounds method), 55
is_portal (earwax.mapping.Box attribute), 53
is_portal (earwax.mapping.box.Box attribute), 38
is_stream (earwax.sound.Sound attribute), 165
is_stuck (earwax.story.RoomObject attribute), 113
is_stuck (earwax.story.world.RoomObject attribute),

105
is_takeable (earwax.story.RoomObject attribute),

113
is_takeable (earwax.story.world.RoomObject

attribute), 105
is_usable (earwax.story.RoomObject attribute), 113
is_usable (earwax.story.world.RoomObject at-

tribute), 105
is_wall() (earwax.mapping.Box method), 54
is_wall() (earwax.mapping.box.Box method), 38
iskeyword() (in module ear-

wax.mapping.map_editor), 50
item() (earwax.menus.Menu method), 78

Index 185

Earwax

item() (earwax.menus.menu.Menu method), 72
ItemsStack (class in earwax.conversation_level), 136

K
keyboard (earwax.input_modes.InputModes attribute),

150

L
label_box() (earwax.mapping.map_editor.MapEditor

method), 49
label_box() (earwax.mapping.MapEditor method),

62
left() (earwax.story.edit_level.ObjectPositionLevel

method), 99
left() (earwax.story.ObjectPositionLevel method),

122
Level (class in earwax.level), 151
level (earwax.game.Game attribute), 143
LevelData (class in earwax.cmd.game_level), 33
LevelMap (class in earwax.mapping.map_editor), 48
load() (earwax.cmd.variable.Variable class method),

35
load() (earwax.config.Config method), 130
load() (earwax.config.ConfigValue method), 132
load() (earwax.mixins.DumpLoadMixin class method),

154
load() (earwax.story.context.StoryContext method), 95
load() (earwax.story.StoryContext method), 126
load() (earwax.story.StoryWorld class method), 115
load() (earwax.story.world.StoryWorld class method),

107
load() (in module earwax.yaml), 172
load_path() (in module earwax.configuration), 134

M
main_menu() (earwax.story.play_level.PlayLevel

method), 101
main_menu() (earwax.story.PlayLevel method), 124
make_directory() (in module ear-

wax.cmd.subcommands.story), 31
make_reverb() (earwax.reverb.Reverb method), 159
make_sound() (earwax.menus.Menu method), 78
make_sound() (earwax.menus.menu.Menu method),

73
MapEditor (class in earwax.mapping), 62
MapEditor (class in earwax.mapping.map_editor), 48
MapEditorBox (class in ear-

wax.mapping.map_editor), 49
MapEditorContext (class in earwax.mapping), 63
MapEditorContext (class in ear-

wax.mapping.map_editor), 49
master_volume (earwax.configuration.SoundConfig

attribute), 134

max_volume (earwax.configuration.SoundConfig at-
tribute), 134

maybe_raise() (in module earwax.sdl), 161
maze() (earwax.mapping.Box class method), 54
maze() (earwax.mapping.box.Box class method), 39
Menu (class in earwax.menus), 76
Menu (class in earwax.menus.menu), 71
MenuConfig (class in earwax.configuration), 133
MenuItem (class in earwax.menus), 79
MenuItem (class in earwax.menus.menu_item), 74
menus (earwax.configuration.EarwaxConfig attribute),

133
motion() (earwax.level.Level method), 152
motion_backspace() (earwax.editor.Editor

method), 139
motion_delete() (earwax.editor.Editor method),

139
motion_down() (earwax.editor.Editor method), 139
motion_left() (earwax.editor.Editor method), 139
motion_right() (earwax.editor.Editor method), 139
motion_up() (earwax.editor.Editor method), 139
mouse_to_string() (ear-

wax.menus.action_menu.ActionMenu method),
65

mouse_to_string() (earwax.menus.ActionMenu
method), 81

move() (earwax.game_board.GameBoard method), 149
move() (earwax.mapping.box_level.BoxLevel method),

43
move() (earwax.mapping.BoxLevel method), 58
move() (earwax.story.edit_level.ObjectPositionLevel

method), 99
move() (earwax.story.ObjectPositionLevel method),

122
move_down() (earwax.menus.Menu method), 78
move_down() (earwax.menus.menu.Menu method), 73
move_up() (earwax.menus.Menu method), 78
move_up() (earwax.menus.menu.Menu method), 73
music (earwax.track.TrackTypes attribute), 169
music_volume (earwax.configuration.SoundConfig

attribute), 134

N
navigate_to() (earwax.menus.file_menu.FileMenu

method), 70
navigate_to() (earwax.menus.FileMenu method),

82
nearest_by_type() (ear-

wax.mapping.box_level.BoxLevel method),
43

nearest_by_type() (earwax.mapping.BoxLevel
method), 58

nearest_door() (ear-
wax.mapping.box_level.BoxLevel method),

186 Index

Earwax

43
nearest_door() (earwax.mapping.BoxLevel

method), 58
nearest_portal() (ear-

wax.mapping.box_level.BoxLevel method),
44

nearest_portal() (earwax.mapping.BoxLevel
method), 59

nearest_square() (in module earwax.utils), 170
NearestBox (class in earwax.mapping), 60
NearestBox (class in earwax.mapping.box_level), 46
NetworkConnection (class in earwax.networking),

156
NetworkingConnectionError, 157
new_convo() (in module ear-

wax.cmd.subcommands.conversation_tree),
29

new_finisher() (ear-
wax.conversation_level.ConversationEditor
method), 135

new_game() (in module ear-
wax.cmd.subcommands.game), 30

new_map() (in module ear-
wax.cmd.subcommands.game_map), 30

new_section() (ear-
wax.conversation_level.ConversationEditor
method), 135

new_vault() (in module ear-
wax.cmd.subcommands.vault), 31

next_category() (ear-
wax.story.play_level.PlayLevel method),
101

next_category() (earwax.story.PlayLevel method),
124

next_item() (earwax.conversation_level.ConversationEditor
method), 135

next_object() (earwax.story.play_level.PlayLevel
method), 101

next_object() (earwax.story.PlayLevel method),
124

NoCache, 163
north (earwax.point.PointDirections attribute), 158
northeast (earwax.point.PointDirections attribute),

158
northwest (earwax.point.PointDirections attribute),

158
NoSuchTile, 150
not_connected (ear-

wax.networking.ConnectionStates attribute),
156

not_empty() (earwax.editor.TextValidator class
method), 140

not_ready (earwax.promises.base.PromiseStates at-
tribute), 87

not_ready (earwax.promises.PromiseStates attribute),
91

NotADoor, 40, 55
NotAPortal, 41, 55
NotConnectedYet, 157

O
object (earwax.story.play_level.PlayLevel attribute),

101
object (earwax.story.PlayLevel attribute), 124
object_actions() (ear-

wax.story.edit_level.EditLevel method), 97
object_actions() (earwax.story.EditLevel

method), 121
object_menu() (earwax.story.play_level.PlayLevel

method), 101
object_menu() (earwax.story.PlayLevel method),

124
ObjectPositionLevel (class in earwax.story), 122
ObjectPositionLevel (class in ear-

wax.story.edit_level), 98
objects (earwax.story.world.WorldStateCategories at-

tribute), 111
objects (earwax.story.WorldStateCategories at-

tribute), 119
objects_menu() (earwax.story.play_level.PlayLevel

method), 101
objects_menu() (earwax.story.PlayLevel method),

124
on_activate() (earwax.mapping.Box method), 54
on_activate() (earwax.mapping.box.Box method),

39
on_cancel() (earwax.promises.base.Promise

method), 87
on_cancel() (earwax.promises.Promise method), 94
on_close() (earwax.game.Game method), 143
on_close() (earwax.mapping.Box method), 54
on_close() (earwax.mapping.box.Box method), 39
on_collide() (earwax.mapping.Box method), 54
on_collide() (earwax.mapping.box.Box method), 39
on_connect() (ear-

wax.networking.NetworkConnection method),
156

on_cover() (earwax.level.Level method), 152
on_data() (earwax.networking.NetworkConnection

method), 156
on_disconnect() (ear-

wax.networking.NetworkConnection method),
156

on_done() (earwax.promises.base.Promise method),
87

on_done() (earwax.promises.Promise method), 94
on_enter() (earwax.mapping.Portal method), 64

Index 187

Earwax

on_enter() (earwax.mapping.portal.Portal method),
51

on_error() (earwax.networking.NetworkConnection
method), 156

on_error() (earwax.promises.base.Promise method),
87

on_error() (earwax.promises.Promise method), 94
on_exit() (earwax.mapping.Portal method), 64
on_exit() (earwax.mapping.portal.Portal method), 51
on_finally() (earwax.promises.base.Promise

method), 87
on_finally() (earwax.promises.Promise method), 94
on_footstep() (earwax.mapping.Box method), 54
on_footstep() (earwax.mapping.box.Box method),

39
on_joybutton_press() (earwax.game.Game

method), 144
on_joybutton_release() (earwax.game.Game

method), 144
on_joyhat_motion() (earwax.game.Game

method), 144
on_key_press() (earwax.game.Game method), 144
on_key_release() (earwax.game.Game method),

144
on_mouse_press() (earwax.game.Game method),

144
on_mouse_release() (earwax.game.Game

method), 145
on_move_fail() (earwax.game_board.GameBoard

method), 150
on_move_fail() (ear-

wax.mapping.box_level.BoxLevel method),
44

on_move_fail() (earwax.mapping.BoxLevel
method), 59

on_move_fail() (ear-
wax.mapping.map_editor.MapEditor method),
49

on_move_fail() (earwax.mapping.MapEditor
method), 62

on_move_success() (ear-
wax.game_board.GameBoard method), 150

on_move_success() (ear-
wax.mapping.box_level.BoxLevel method),
44

on_move_success() (earwax.mapping.BoxLevel
method), 59

on_next() (earwax.promises.staggered_promise.StaggeredPromise
method), 89

on_next() (earwax.promises.StaggeredPromise
method), 94

on_open() (earwax.mapping.Box method), 54
on_open() (earwax.mapping.box.Box method), 39
on_pop() (earwax.level.IntroLevel method), 151

on_pop() (earwax.level.Level method), 152
on_pop() (earwax.menus.Menu method), 78
on_pop() (earwax.menus.menu.Menu method), 73
on_pop() (earwax.story.play_level.PlayLevel method),

102
on_pop() (earwax.story.PlayLevel method), 124
on_push() (earwax.game_board.GameBoard method),

150
on_push() (earwax.level.IntroLevel method), 151
on_push() (earwax.level.Level method), 152
on_push() (earwax.mapping.box_level.BoxLevel

method), 44
on_push() (earwax.mapping.BoxLevel method), 59
on_push() (earwax.menus.Menu method), 78
on_push() (earwax.menus.menu.Menu method), 73
on_push() (earwax.story.play_level.PlayLevel

method), 102
on_push() (earwax.story.PlayLevel method), 124
on_reveal() (earwax.level.Level method), 152
on_reveal() (earwax.menus.Menu method), 78
on_reveal() (earwax.menus.menu.Menu method), 73
on_roll() (earwax.die.Die method), 138
on_selected() (ear-

wax.menus.menu_item.MenuItem method),
74

on_selected() (earwax.menus.MenuItem method),
80

on_submit() (earwax.editor.Editor method), 140
on_text() (earwax.editor.Editor method), 140
on_text() (earwax.menus.Menu method), 78
on_text() (earwax.menus.menu.Menu method), 73
on_text_motion() (earwax.level.Level method),

152
on_turn() (earwax.mapping.box_level.BoxLevel

method), 44
on_turn() (earwax.mapping.BoxLevel method), 59
open() (earwax.mapping.Box method), 54
open() (earwax.mapping.box.Box method), 39
open_joysticks() (earwax.game.Game method),

145
option_menu() (ear-

wax.menus.config_menu.ConfigMenu method),
68

option_menu() (earwax.menus.ConfigMenu
method), 84

origin() (earwax.point.Point class method), 158
output() (earwax.game.Game method), 145
output_audio (ear-

wax.conversation_level.CallResponseSettings
attribute), 134

output_braille (ear-
wax.conversation_level.CallResponseSettings
attribute), 134

output_item() (ear-

188 Index

Earwax

wax.conversation_level.ConversationEditor
method), 135

output_speech (ear-
wax.conversation_level.CallResponseSettings
attribute), 134

P
paste() (earwax.editor.Editor method), 140
path (earwax.cmd.project_credit.ProjectCredit at-

tribute), 35
pause() (earwax.sound.Sound method), 165
pause() (earwax.story.play_level.PlayLevel method),

102
pause() (earwax.story.PlayLevel method), 124
paused (earwax.sound.Sound attribute), 165
perform_action() (ear-

wax.story.play_level.PlayLevel method),
102

perform_action() (earwax.story.PlayLevel
method), 124

play() (earwax.ambiance.Ambiance method), 129
play() (earwax.sound.Sound method), 165
play() (earwax.story.context.StoryContext method), 95
play() (earwax.story.StoryContext method), 126
play() (earwax.track.Track method), 168
play_action_sound() (ear-

wax.story.play_level.PlayLevel method),
102

play_action_sound() (earwax.story.PlayLevel
method), 124

play_cursor_sound() (ear-
wax.story.play_level.PlayLevel method),
102

play_cursor_sound() (earwax.story.PlayLevel
method), 125

play_object_ambiances() (ear-
wax.story.play_level.PlayLevel method),
102

play_object_ambiances() (ear-
wax.story.PlayLevel method), 125

play_path() (earwax.sound.SoundManager method),
166

play_story() (in module ear-
wax.cmd.subcommands.story), 31

play_stream() (earwax.sound.SoundManager
method), 166

PlayLevel (class in earwax.story), 122
PlayLevel (class in earwax.story.play_level), 100
pluralise() (in module earwax.utils), 170
Point (class in earwax.point), 157
point_menu() (ear-

wax.mapping.map_editor.MapEditor method),
49

point_menu() (earwax.mapping.MapEditor method),
62

PointDirections (class in earwax.point), 158
points_menu() (ear-

wax.mapping.map_editor.MapEditor method),
49

points_menu() (earwax.mapping.MapEditor
method), 62

poll() (earwax.networking.NetworkConnection
method), 156

poll_synthizer_events() (earwax.game.Game
method), 145

pop_buffer() (earwax.sound.BufferCache method),
162

pop_level() (earwax.game.Game method), 145
pop_levels() (earwax.game.Game method), 145
populate() (earwax.game_board.GameBoard

method), 150
populate_from_dict() (earwax.config.Config

method), 131
Portal (class in earwax.mapping), 63
Portal (class in earwax.mapping.portal), 50
press_key() (earwax.game.Game method), 145
previous_category() (ear-

wax.story.play_level.PlayLevel method),
102

previous_category() (earwax.story.PlayLevel
method), 125

previous_item() (ear-
wax.conversation_level.ConversationEditor
method), 135

previous_object() (ear-
wax.story.play_level.PlayLevel method),
102

previous_object() (earwax.story.PlayLevel
method), 125

Project (class in earwax.cmd.project), 34
ProjectCredit (class in earwax.cmd.project_credit),

34
Promise (class in earwax.promises), 94
Promise (class in earwax.promises.base), 86
PromiseStates (class in earwax.promises), 91
PromiseStates (class in earwax.promises.base), 87
prune_buffers() (earwax.sound.BufferCache

method), 162
push_action_menu() (earwax.game.Game

method), 146
push_actions_menu() (in module ear-

wax.story.edit_level), 99
push_credits() (earwax.story.context.StoryContext

method), 96
push_credits() (earwax.story.StoryContext

method), 126
push_credits_menu() (earwax.game.Game

Index 189

Earwax

method), 146
push_level() (earwax.game.Game method), 146
push_rooms_menu() (in module ear-

wax.story.edit_level), 99

R
random() (earwax.point.Point class method), 158
random_buffer() (earwax.sound.BufferDirectory

method), 163
random_file() (in module earwax.utils), 170
random_path() (earwax.sound.BufferDirectory

method), 163
ready (earwax.promises.base.PromiseStates attribute),

87
ready (earwax.promises.PromiseStates attribute), 91
rebuild_menu() (earwax.menus.file_menu.FileMenu

method), 70
rebuild_menu() (earwax.menus.FileMenu method),

82
regexp() (earwax.editor.TextValidator class method),

141
register_and_bind() (ear-

wax.mixins.RegisterEventMixin method),
154

register_box() (ear-
wax.mapping.box_level.BoxLevel method),
44

register_box() (earwax.mapping.BoxLevel
method), 59

register_event() (ear-
wax.mixins.RegisterEventMixin method),
155

register_func() (ear-
wax.promises.threaded_promise.ThreadedPromise
method), 90

register_func() (ear-
wax.promises.ThreadedPromise method),
92

register_sound() (earwax.sound.SoundManager
method), 166

register_task() (earwax.game.Game method), 146
RegisterEventMixin (class in earwax.mixins), 154
reload_template() (ear-

wax.mapping.map_editor.MapEditorContext
method), 49

reload_template() (ear-
wax.mapping.MapEditorContext method),
63

remessage() (earwax.story.edit_level.EditLevel
method), 98

remessage() (earwax.story.EditLevel method), 121
remove_box() (earwax.mapping.box_level.BoxLevel

method), 44

remove_box() (earwax.mapping.BoxLevel method),
59

remove_sound() (earwax.sound.SoundManager
method), 167

remove_task() (earwax.game.Game method), 147
rename() (earwax.story.edit_level.EditLevel method),

98
rename() (earwax.story.EditLevel method), 121
rename_box() (ear-

wax.mapping.map_editor.MapEditor method),
49

rename_box() (earwax.mapping.MapEditor method),
62

replace_level() (earwax.game.Game method), 147
reposition_object() (ear-

wax.story.edit_level.EditLevel method), 98
reposition_object() (earwax.story.EditLevel

method), 121
reset() (earwax.menus.reverb_editor.ReverbEditor

method), 75
reset() (earwax.menus.ReverbEditor method), 86
reset() (earwax.story.edit_level.ObjectPositionLevel

method), 99
reset() (earwax.story.ObjectPositionLevel method),

122
reset_source() (earwax.sound.Sound method), 165
response_menu() (ear-

wax.conversation_level.ConversationEditor
method), 135

restart() (earwax.sound.Sound method), 165
reveal_level() (earwax.game.Game method), 147
Reverb (class in earwax.reverb), 158
ReverbEditor (class in earwax.menus), 85
ReverbEditor (class in earwax.menus.reverb_editor),

75
ReverbSetting (class in ear-

wax.menus.reverb_editor), 75
right() (earwax.story.edit_level.ObjectPositionLevel

method), 99
right() (earwax.story.ObjectPositionLevel method),

122
roll() (earwax.die.Die method), 138
room (earwax.mapping.box.BoxTypes attribute), 40
room (earwax.mapping.BoxTypes attribute), 55
room (earwax.story.edit_level.EditLevel attribute), 98
room (earwax.story.EditLevel attribute), 121
room (earwax.story.world.WorldState attribute), 111
room (earwax.story.world.WorldStateCategories at-

tribute), 111
room (earwax.story.WorldState attribute), 119
room (earwax.story.WorldStateCategories attribute), 119
RoomExit (class in earwax.story), 112
RoomExit (class in earwax.story.world), 103
RoomObject (class in earwax.story), 112

190 Index

Earwax

RoomObject (class in earwax.story.world), 104
RoomObjectClass (class in earwax.story), 113
RoomObjectClass (class in earwax.story.world), 105
RoomObjectTypes (class in earwax.story), 114
RoomObjectTypes (class in earwax.story.world), 105
RumbleEffect (class in earwax.rumble_effects), 159
RumbleSequence (class in earwax.rumble_effects),

160
RumbleSequenceLine (class in ear-

wax.rumble_effects), 160
run() (earwax.action.Action method), 128
run() (earwax.game.Game method), 147
run() (earwax.promises.base.Promise method), 87
run() (earwax.promises.Promise method), 95
run() (earwax.promises.staggered_promise.StaggeredPromise

method), 89
run() (earwax.promises.StaggeredPromise method), 94
run() (earwax.promises.threaded_promise.ThreadedPromise

method), 90
run() (earwax.promises.ThreadedPromise method), 92
running (earwax.promises.base.PromiseStates at-

tribute), 87
running (earwax.promises.PromiseStates attribute), 91

S
save() (earwax.config.Config method), 131
save() (earwax.conversation_level.ConversationEditor

method), 135
save() (earwax.mapping.map_editor.MapEditor

method), 49
save() (earwax.mapping.MapEditor method), 63
save() (earwax.mixins.DumpLoadMixin method), 154
save() (earwax.vault_file.VaultFile method), 171
save_state() (earwax.story.play_level.PlayLevel

method), 102
save_state() (earwax.story.PlayLevel method), 125
save_world() (earwax.story.edit_level.EditLevel

method), 98
save_world() (earwax.story.EditLevel method), 121
scheduled_close() (earwax.mapping.Box method),

54
scheduled_close() (earwax.mapping.box.Box

method), 39
script_name (earwax.cmd.game_level.GameLevelScript

attribute), 32
script_path (earwax.cmd.game_level.GameLevelScript

attribute), 32
sdl_raise() (in module earwax.sdl), 161
SdlError, 161
select_item() (earwax.menus.file_menu.FileMenu

method), 70
select_item() (earwax.menus.FileMenu method),

82

send() (earwax.networking.NetworkConnection
method), 157

set_action_sound() (ear-
wax.story.edit_level.EditLevel method), 98

set_action_sound() (earwax.story.EditLevel
method), 121

set_bearing() (ear-
wax.mapping.box_level.BoxLevel method),
44

set_bearing() (earwax.mapping.BoxLevel method),
59

set_coordinates() (ear-
wax.mapping.box_level.BoxLevel method),
44

set_coordinates() (earwax.mapping.BoxLevel
method), 59

set_cursor_position() (earwax.editor.Editor
method), 140

set_gain() (earwax.sound.Sound method), 165
set_initial_id() (ear-

wax.conversation_level.ConversationEditor
method), 135

set_initial_room() (ear-
wax.story.context.StoryContext method),
96

set_initial_room() (earwax.story.StoryContext
method), 126

set_looping() (earwax.sound.Sound method), 165
set_message() (earwax.story.edit_level.EditLevel

method), 98
set_message() (earwax.story.EditLevel method), 121
set_name() (earwax.story.edit_level.EditLevel

method), 98
set_name() (earwax.story.EditLevel method), 121
set_object_type() (ear-

wax.story.edit_level.EditLevel method), 98
set_object_type() (earwax.story.EditLevel

method), 121
set_panner_strategy() (ear-

wax.story.context.StoryContext method),
96

set_panner_strategy() (ear-
wax.story.StoryContext method), 126

set_position() (earwax.sound.Sound method), 165
set_room() (earwax.story.play_level.PlayLevel

method), 102
set_room() (earwax.story.PlayLevel method), 125
set_sound() (earwax.conversation_level.ConversationEditor

method), 135
set_text() (earwax.conversation_level.ConversationEditor

method), 135
set_value() (earwax.menus.config_menu.ConfigMenu

method), 68
set_value() (earwax.menus.ConfigMenu method),

Index 191

Earwax

84
set_value() (earwax.menus.reverb_editor.ReverbEditor

method), 75
set_value() (earwax.menus.ReverbEditor method),

86
set_volume() (earwax.game.Game method), 147
set_world_messages() (ear-

wax.story.edit_level.EditLevel method), 98
set_world_messages() (earwax.story.EditLevel

method), 121
set_world_sound() (ear-

wax.story.edit_level.EditLevel method), 98
set_world_sound() (earwax.story.EditLevel

method), 121
setup() (earwax.game.Game method), 148
setup_run() (earwax.game.Game method), 148
shadow_description() (ear-

wax.story.edit_level.EditLevel method), 98
shadow_description() (earwax.story.EditLevel

method), 121
shadow_name() (earwax.story.edit_level.EditLevel

method), 98
shadow_name() (earwax.story.EditLevel method), 121
show_all() (earwax.menus.action_menu.ActionMenu

method), 66
show_all() (earwax.menus.ActionMenu method), 81
show_coordinates() (ear-

wax.mapping.box_level.BoxLevel method),
45

show_coordinates() (earwax.mapping.BoxLevel
method), 59

show_facing() (ear-
wax.mapping.box_level.BoxLevel method),
45

show_facing() (earwax.mapping.BoxLevel method),
59

show_nearest_door() (ear-
wax.mapping.box_level.BoxLevel method),
45

show_nearest_door() (earwax.mapping.BoxLevel
method), 60

show_selection() (earwax.menus.Menu method),
79

show_selection() (earwax.menus.menu.Menu
method), 73

show_warnings() (ear-
wax.story.context.StoryContext method),
96

show_warnings() (earwax.story.StoryContext
method), 126

shutdown() (earwax.networking.NetworkConnection
method), 157

skip() (earwax.level.IntroLevel method), 151
solid (earwax.mapping.box.BoxTypes attribute), 40

solid (earwax.mapping.BoxTypes attribute), 55
sort_boxes() (earwax.mapping.box_level.BoxLevel

method), 45
sort_boxes() (earwax.mapping.BoxLevel method),

60
sort_items() (ear-

wax.conversation_level.ConversationEditor
method), 135

Sound (class in earwax.sound), 163
sound (earwax.configuration.EarwaxConfig attribute),

133
sound_manager (earwax.mapping.Box attribute), 54
sound_manager (earwax.mapping.box.Box attribute),

39
sound_volume (earwax.configuration.SoundConfig

attribute), 134
SoundConfig (class in earwax.configuration), 133
SoundError, 165
SoundManager (class in earwax.sound), 165
SoundManagerError, 167
sounds_menu() (earwax.story.edit_level.EditLevel

method), 98
sounds_menu() (earwax.story.EditLevel method), 121
south (earwax.point.PointDirections attribute), 158
southeast (earwax.point.PointDirections attribute),

158
southwest (earwax.point.PointDirections attribute),

158
speak (earwax.configuration.SpeechConfig attribute),

134
speech (earwax.configuration.EarwaxConfig attribute),

133
SpeechConfig (class in earwax.configuration), 134
StaggeredPromise (class in earwax.promises), 93
StaggeredPromise (class in ear-

wax.promises.staggered_promise), 88
start() (earwax.rumble_effects.RumbleEffect

method), 160
start() (earwax.rumble_effects.RumbleSequence

method), 160
start() (earwax.task.Task method), 167
start_action() (earwax.game.Game method), 148
start_ambiances() (earwax.level.Level method),

152
start_rumble() (earwax.game.Game method), 148
start_tracks() (earwax.level.Level method), 152
state (earwax.story.play_level.PlayLevel attribute),

102
state (earwax.story.PlayLevel attribute), 125
stop() (earwax.ambiance.Ambiance method), 130
stop() (earwax.game.Game method), 148
stop() (earwax.task.Task method), 168
stop() (earwax.track.Track method), 168
stop_action() (earwax.game.Game method), 148

192 Index

Earwax

stop_action_sounds() (ear-
wax.story.play_level.PlayLevel method),
103

stop_action_sounds() (earwax.story.PlayLevel
method), 125

stop_ambiances() (earwax.level.Level method),
152

stop_object_ambiances() (ear-
wax.story.play_level.PlayLevel method),
103

stop_object_ambiances() (ear-
wax.story.PlayLevel method), 125

stop_rumble() (earwax.game.Game method), 148
stop_tracks() (earwax.level.Level method), 153
StoryContext (class in earwax.story), 125
StoryContext (class in earwax.story.context), 95
StoryWorld (class in earwax.story), 114
StoryWorld (class in earwax.story.world), 106
StringMixin (class in earwax.story.world), 107
stuck (earwax.story.RoomObjectTypes attribute), 114
stuck (earwax.story.world.RoomObjectTypes attribute),

105
subcommand() (in module earwax.cmd.main), 33
submit() (earwax.editor.Editor method), 140
subsection_menu() (ear-

wax.menus.config_menu.ConfigMenu method),
68

subsection_menu() (earwax.menus.ConfigMenu
method), 85

switch_item() (ear-
wax.conversation_level.ConversationEditor
method), 136

symbol_to_string() (ear-
wax.menus.action_menu.ActionMenu method),
66

symbol_to_string() (earwax.menus.ActionMenu
method), 81

T
take_object() (earwax.story.play_level.PlayLevel

method), 103
take_object() (earwax.story.PlayLevel method),

125
takeable (earwax.story.RoomObjectTypes attribute),

114
takeable (earwax.story.world.RoomObjectTypes at-

tribute), 106
Task (class in earwax.task), 167
TextValidator (class in earwax.editor), 140
ThreadedPromise (class in earwax.promises), 91
ThreadedPromise (class in ear-

wax.promises.threaded_promise), 89
TitleMixin (class in earwax.mixins), 155

to_box() (earwax.mapping.map_editor.MapEditorContext
method), 50

to_box() (earwax.mapping.MapEditorContext
method), 63

to_point() (earwax.mapping.map_editor.MapEditorContext
method), 50

to_point() (earwax.mapping.MapEditorContext
method), 63

top_back_left (ear-
wax.mapping.map_editor.AnchorPoints at-
tribute), 47

top_back_right (ear-
wax.mapping.map_editor.AnchorPoints at-
tribute), 47

top_front_left (ear-
wax.mapping.map_editor.AnchorPoints at-
tribute), 47

top_front_right (ear-
wax.mapping.map_editor.AnchorPoints at-
tribute), 47

Track (class in earwax.track), 168
TrackTypes (class in earwax.track), 168
Trigger (class in earwax.cmd.game_level), 33
turn() (earwax.mapping.box_level.BoxLevel method),

45
turn() (earwax.mapping.BoxLevel method), 60
type_bool (earwax.cmd.variable.VariableTypes

attribute), 35
type_float (earwax.cmd.variable.VariableTypes at-

tribute), 35
type_handler() (ear-

wax.menus.config_menu.ConfigMenu method),
68

type_handler() (earwax.menus.ConfigMenu
method), 85

type_int (earwax.cmd.variable.VariableTypes at-
tribute), 35

type_string (earwax.cmd.variable.VariableTypes at-
tribute), 35

TypeHandler (class in earwax.menus), 85
TypeHandler (class in earwax.menus.config_menu),

69

U
UnknownTypeError, 69, 85
up() (earwax.story.edit_level.ObjectPositionLevel

method), 99
up() (earwax.story.ObjectPositionLevel method), 122
update() (in module ear-

wax.cmd.subcommands.init_project), 30
update_kwargs() (earwax.sound.SoundManager

method), 167
usable (earwax.story.RoomObjectTypes attribute), 114

Index 193

Earwax

usable (earwax.story.world.RoomObjectTypes at-
tribute), 106

use_exit() (earwax.story.play_level.PlayLevel
method), 103

use_exit() (earwax.story.PlayLevel method), 125
use_object() (earwax.story.play_level.PlayLevel

method), 103
use_object() (earwax.story.PlayLevel method), 125
use_object_menu() (ear-

wax.story.play_level.PlayLevel method),
103

use_object_menu() (earwax.story.PlayLevel
method), 125

V
valid_label() (in module ear-

wax.mapping.map_editor), 50
value_to_string() (earwax.config.ConfigValue

method), 132
ValueAdjustments (class in ear-

wax.menus.reverb_editor), 75
Variable (class in earwax.cmd.variable), 35
VariableTypes (class in earwax.cmd.variable), 35
VaultFile (class in earwax.vault_file), 170
volume (earwax.mapping.box.BoxBounds attribute), 40
volume (earwax.mapping.BoxBounds attribute), 55

W
walls_between() (ear-

wax.mapping.box_level.BoxLevel method),
45

walls_between() (earwax.mapping.BoxLevel
method), 60

west (earwax.point.PointDirections attribute), 158
width (earwax.mapping.box.BoxBounds attribute), 40
width (earwax.mapping.BoxBounds attribute), 55
world (earwax.story.play_level.PlayLevel attribute),

103
world (earwax.story.PlayLevel attribute), 125
world_options() (ear-

wax.story.context.StoryContext method),
96

world_options() (earwax.story.StoryContext
method), 126

world_sounds() (earwax.story.edit_level.EditLevel
method), 98

world_sounds() (earwax.story.EditLevel method),
121

WorldAction (class in earwax.story), 115
WorldAction (class in earwax.story.world), 107
WorldAmbiance (class in earwax.story), 116
WorldAmbiance (class in earwax.story.world), 107
WorldMessages (class in earwax.story), 116
WorldMessages (class in earwax.story.world), 108

WorldRoom (class in earwax.story), 117
WorldRoom (class in earwax.story.world), 109
WorldState (class in earwax.story), 118
WorldState (class in earwax.story.world), 110
WorldStateCategories (class in earwax.story),

119
WorldStateCategories (class in ear-

wax.story.world), 111

Y
yes_no() (earwax.menus.Menu class method), 79
yes_no() (earwax.menus.menu.Menu class method),

74

194 Index

	Introduction
	Project Goals
	Workflow
	Full Example

	Installation
	Installing Using pip
	Install Using Git
	Running Tests
	Building Documentation
	Features
	Implemented Features
	Feature Requests

	Tutorials
	Getting Started
	Editors
	Creating An Editor
	Submitting Text
	Dismissing Editors
	Editing With The Hat
	Sounds
	Promises
	Stories
	Building Stories

	earwax
	earwax package

	Indices and tables
	Python Module Index
	Index

