

Welcome to Earwax’s documentation!

Contents:

	Introduction
	Project Goals

	Workflow

	Full Example

	Installation

	Installing Using pip

	Install Using Git

	Running Tests

	Building Documentation

	Features
	Implemented Features

	Feature Requests

	Tutorials
	Getting Started

	Editors

	Creating An Editor

	Submitting Text

	Dismissing Editors

	Editing With The Hat

	Sounds

	Promises

	Stories

	Building Stories

	earwax
	earwax package

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Project Goals

Earwax is an audio game library with a focus on readable code, minimal boilerplate, and rapid prototyping.

It should be possible to create a basic game with basic code. It should also be possible to add layers of complexity without the game library holding you back.

Workflow

The basic flow of an Earwax program is:

	Create a Game instance.

	Create 1 or more Level instances.

	Add actions to the level instance(s) you created in the previous step.

	Create a pyglet Window instance.

	Run the game object you created in step ` with the window object you created in the previous step.

Full Example

The below code is a full -albeit minimal - code example:

from earwax import Game, Level
from pyglet.window import key, mouse, Window
w = Window(caption='Test Game')
g = Game()
l = Level(g)

@l.action('Key speak', symbol=key.S)
def key_speak():
 """Say something when the s key is pressed."""
 g.output('You pressed the s key.')

@l.action('Mouse speak', mouse_button=mouse.LEFT)
def mouse_speak():
 """Speak when the left mouse button is pressed."""
 g.output('You pressed the left mouse button.')

@l.action('Quit', symbol=key.ESCAPE, mouse_button=mouse.RIGHT)
def do_quit():
 """Quit the game."""
 g.stop()

g.run(w, initial_level=l)

Installation

Installing Using pip

It is recommended that you install Earwax using pip:

pip install Earwax

Install Using Git

Alternatively, you could install using git:

git clone https://github.com/chrisnorman7/earwax.git
cd earwax
python setup.py

Running Tests

To run the tests, you will need to install pytest [https://pytest.org/]:

pip install pytest

Then to run the tests:

py.test

While the tests run, many windows will appear and disappear. That is completely normal, I just use lots of Pyglet for testing.

Building Documentation

You can always find the most up to date version of the docs on Read the Docs [https://earwax.readthedocs.io/en/latest/], but you can also build them yourself:

pip install -Ur docs/requirements.txt
python setup.py build_sphinx

Features

Implemented Features

	Ability to separate disparate parts of a game into Level constructs.

	Ability to push, pop, and replace Level instances on the central Game object.

	Uses Pyglet’s event system, mostly eliminating the need to subclass.

	Uses Synthizer [https://synthizer.github.io/] as its sound backend.

	Both simple and advanced sound players, designed for playing interface sounds.

	A flexible and unobtrusive configuration framework that uses yaml.

	The ability to configure various aspects of the framework (including generic sound icons in menus), simply by setting configuration values on a configuration object which resides on your game object.

	Various functions for playing sounds and cleaning them up when they’re finished.

	Different types of levels already implemented:

	Game board levels, so you can create board games with minimal boilerplate.

	Box levels, which contain boxes, which can be connected together to make maps. Both free and restricted movement commands are already implemented.

	The ability to add actions to earwax.Level instances with keyboard keys, mouse buttons, joystick buttons, and joystick hat positions.

	A text-to-speech system which uses cytolk [https://github.com/pauliyobo/cytolk].

	An earwax command which can currently create default games.

	Various Promise-style classes for long-running tasks.

Feature Requests

If you need a feature that is not already on this list, please submit a feature request [https://github.com/chrisnorman7/earwax/issues/new].

Tutorials

This section contains various tutorials that will show you how to use the different parts of earwax.

Contents:

	Getting Started

	Editors

	Creating An Editor
	Motions

	Submitting Text

	Dismissing Editors

	Editing With The Hat

	Sounds
	Buffer Directories

	Promises
	Threaded Promises

	Staggered Promises

	Stories
	Prerequisites

	Getting Started

	Playing a Story

	Editing a Story

	The Main Menu

	Start Game

	Saving Stories

	Building Stories

Getting Started

When getting started with any new library, it is often hard to know where to start. Earwax contains many tutorials, but that doesn’t help you write your first line of code.

For writing your first game, there is the game command:

$ earwax game main.py
Creating a blank game at main.py.
Done.

This will create you a very minimal game, which can already be run:

$ python main.py

This should load up a game called “New Game”.

This game already has a few things to get you started:

	A main menu, with an entry to play the game, show credits, and exit.

	An initial level with a help menu. You can press Q from this level to return to the main menu.

	An extremely self-aggrandising default credit, mentioning Earwax, and its illustrious creator.

	Commented out lines which provide main menu, and initial level music.

This game serves as a starting point for your own work, and should be expanded upon.

Editors

In earwax, an Editor represents a simple text editor.

Editors can be used for editing single lines of text. While it is entirely possible to add a line break to the text when you create an Editor instance, pressing the enter key while an Editor instance is pushed onto your game will result in the on_submit() event being dispatched.

Creating An Editor

Creating an editor can be done the same way you can create most earwax.Level instances:

e: Editor = Editor(game)

As you can see, a earwax.Game instance is necessary.

You can also supply a text argument:

e: editor = Editor(game, text='Hello world')

The cursor will be placed at the end of the text, and it can be edited with standard operating system commands, unless you alter what motions are supported of course.

Motions

You can easily add extra motions, or override the default ones:

from pyglet.window import key

@e.motion(key.MOTION_BACKSPACE)
def backspace():
 game.output('Backspace was pressed.')

Now, when the backspace key is pressed, your new event will fire too.

Submitting Text

When the enter key is pressed, or a game hat is used to select “submit” (more on that later), the earwax.Editor.submit() method is called.

You can retrieve the text that was entered with the on_submit() event:

@e.event
def on_submit(text: str) -> None:
 print('Text entered: %r.' % text)

Dismissing Editors

Like Earwax menus, editors are dismissible by default. This can of course be changed:

e: Editor = Editor(game, dismissible=False)

Now, when the escape key is pressed, nothing happens.

Editing With The Hat

You can use a game controller to edit text. Simply use the left and right directions to move through text, and the up and down directions to select letters.

If you keep pressing the up hat, you will come to a delete option. One more up performs the deletion.

If your focus is at the end of the line, the delete option will be replaced with a “Submit” option instead. This is the same as pressing the enter key.

Sounds

Being an audio game engine, sounds are a pretty important part of what Earwax can do.

As such, many useful sound functions have been added, with more to come.

This part of the tutorial will attempt to document some of these functions, more fully than the included documentation.

Contents:

	Buffer Directories

Buffer Directories

The idea behind the earwax.BufferDirectory class, is that quite often we need a single directory of sounds we can pick from. This usually leads to code like the following:

room_ambiance = Sound('sounds/ambiances/room.wav')
station_ambiance = Sound('sounds/ambiances/station.wav')
ship_ambiance = Sound('sounds/ambiances/ship.wav')

This is particularly error prone, although has the benefit of letting you autocomplete variable names in your editor of choice.

Inspired by a possible future feature of Synthizer [https://synthizer.github.io/], I decided to make a small utility class for the express purpose of loading a directory of sounds. Using this class, the above code can be rewritten as:

from pathlib import Path

from earwax import BufferDirectory

ambiances: BufferDirectory = BufferDirectory(Path('sounds/ambiances'))

room_ambiance = 'room.wav'
station_ambiance = 'station.wav'
ship_ambiance = 'ship.wav'

Now you can for example get the station ambiance with the below code:

buffer: Buffer = ambiances.buffers[station_ambiance]

This is useful if for example you’ve moved the entire directory. Instead of performing a find and replace, you can simply change the BufferDirectory instance:

ambiances: BufferDirectory = BufferDirectory(Path('sounds/amb'))

Another common idiom is to select a random sound file from a directory. Earwax has a few sound functions with this capability already. If you pass a Path instance which happens to be a directory to earwax.play_path(), or earwax.play_and_destroy(), then a random file will be selected from the resulting directory.

The BufferDirectory class takes things one step further:

lasers: BufferDirectory = BufferDirectory(Path('sounds/weapons/lasers'))

laser_buffer: Buffer = lasers.random_buffer()

This will get you a random buffer from lasers.buffers.

Sometimes you may have other files in a sounds directory in addition to the sound files themselves, attribution information for example. If this is the case, simply pass a
glob [https://en.wikipedia.org/wiki/Glob_(programming)] argument when instantiating the class, like so:

bd: BufferDirectory = BufferDirectory(Path('sounds/music'), glob='*.ogg')

In closing, the BufferDirectory class is useful if you have a directory of sound files, that you’ll want at some point throughout the lifecycle of your game. Folders of music tracks, footstep sounds, and weapon sounds are just some of the examples that spring to mind.

Promises

Promises are a way of running different kinds of tasks with Earwax.

The term is shamelessly stolen from JavaScript [https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise], and Earwax’s interpretation is largely the same: A promise is instantiated, and set to run. At some point in the future, the promise will have a value, which can be listened for with the on_done() event.

This part of the tutorial contains some further thoughts on using the different types of promise Earwax has to offer.

Contents:

	Threaded Promises

	Staggered Promises

Threaded Promises

The inspiration for the earwax.ThreadedPromise class came from a game i was writing. I wanted to load assets, as well as data from the internet, and it was taking ages. While things were loading, the game appeared to crash, which obviously wasn’t good.

With the ThreadedPromise class, you can leave something to work in another thread, while the main thread remains free to process input ETC. You can use the on_done() event to be notified of (and provided with) the return value from your function.

For example:

promise: ThreadedPromise = ThreadedPromise(game.thread_pool)

@promise.register_func
def long_running_task() -> str:
 # Something which takes forever...
 return 'Finished.'

@promise.event
def on_done(value: str) -> None:
 game.output('Task complete.')

promise.run()

As you can see from the above code, you use the register_func() method to register the function to use. That function will be automatically called in another thread, and the result send to the on_done() event.

If your code is likely to raise an error, there is a on_error() event too:

from pyglet.event import event_handled

@promise.event
def on_error(e: Exception) -> bool:
 game.output('Error: %r.' % e)
 return event_handled

By default, the on_error event raises the passed error, so it is necessary to return the event_handled value to prevent any other handlers from firing.

For the sake of completeness, there is a on_finally() event too:

@promise.event
def on_finally() -> None:
 game.output('Done.')

This event will be dispatched when the promise has been completed, whether or not an exception was raised.

If you want to cancel, there is a cancel() method to do it with, and of course a on_cancel() event which will be dispatched.

It is unlikely that the actual function will be cancelled, but you can rest assured that no further events will be dispatched.

When you have created all of your events, you should use the run() method to start your promise running.

It is worth noting that although this particular part of the tutorial concerns the ThreadedPromise class, all of the events that have been mentioned are actually present on the earwax.Promise class, and it is simply up to subclasses to implement them.

Staggered Promises

The earwax.StaggeredPromise class, which should have probably been called the ContinuationPromise class, was created out of my desire to write MOO-style suspends in Python.

Using the class, you can simply yield a number, and your function will suspend for approximately that long:

from earwax.types import StaggeredPromiseGeneratorType

@StaggeredPromise.decorate
def promise() -> StaggeredPromiseGeneratorType:
 game.output('Starting now.')
 yield 2.0
 game.output('Still working.')
 yield 5.0
 game.output('Done.')

promise.run()

The only event which differs from those found on :Threaded Promises, is the on_next() event.

This event is dispatched every time your promise function yields:

@promise.event
def on_next(delay: float) -> None:
print('Delay: %.2f' % delay)

Stories

Stories are a way to create simple games using Earwax with no code. Stories consist of rooms, which contain exits and objects. Objects and exits in turn have actions which can be performed on them.

This document attempts to layout the steps involved in creating and editing a story.

Prerequisites

Before getting started, let’s make sure everything is installed correctly. This assumes you are comfortable with whatever terminal is offered by your system.

Make sure earwax is installed:

pip install -U earwax

Earwax is frequently changing, so it’s important you have the latest version.

If you want to copy and paste with earwax, you’ll need the Pyperclip [https://pypi.org/project/pyperclip/] package. Let’s install that now:

pip install -U pyperclip

This package is not necessary, but when you’re copy and pasting long sound paths, it’s certainly helpful.

Getting Started

Before we can edit a story, we must first create one. To do this, we use the story new subcommand of earwax:

earwax story new world.yaml

You should see something like the following:

Created Untitled World.

The filename can be whatever you want, and you are free to rename or move this file as you wish. Be aware however, that unless the paths to the sound files you use are absolute, moving the file will not work as you expect.

Playing a Story

Stories can be played with the story play command, like so:

earwax story play world.yaml

You can replace world.yaml in the command above to be whatever filename you have chosen for your world.

Editing a Story

Now we have created a story, let’s edit it.

When editing stories, you see the same interface as if you were a normal player. There are extra hotkeys of course, and the main menu changes to present you with extra options for configuring the over all story, as well as Earwax itself.

To get started, type:

earwax story edit world.yaml

The filename in that command should be the same one you gave to the story new command.

You will see a couple of log lines printed to your terminal’s standard output, then you’ll be in the main menu.

The Main Menu

The main menu is largely the same whether you’re playing or editing a story. The difference is the number of items which are displayed.

Start new game

Takes you into the game world, where you can perform your edits.

This option is also present when playing a story.

Load game

Start with a loaded saved game.

This option is also present when playing a story.

Show warnings

This option will show you a list of any warnings which were generated while loading the story file.

When you first edit a game, there will be 1 warning. This is because the default room that is created has no exits leading from it.

Save story

This option will save any edits you have made so far. The story can also be saved by pressing control + s from within the story itself.

Configure Earwax

You can use this option to configure various parts of the game engine itself, such as the default menu sounds, and whether or not speech and braille are enabled.

When you have finished in this menu, you must activate the “Return to main menu” option at the end. This is so that the configuration can be saved, and you can be warned of any problems.

Add or remove credits

This option lets you add or remove credits from your game. This is useful if you plan to (or even need to) attribute someone for assets used in your story.

Set initial room

This option lets you set the room which the player will end up in when they first start playing your game.

It won’t always be the room they appear in when they start playing, because they can save their progress, and then load it using the Load game option.

Main menu music

This menu is where you can add or remove music from the main menu.

It is possible to have multiple tracks playing simultaneously, but you cannot alter their individual volumes.

World options

This menu allows you to rename your story, add an author, and set the default panning strategy.

Report Earwax bug

This option opens a web page where you can report a bug [https://github.com/chrisnorman7/earwax/issues/new] to Earwax.

As a personal note: Please please please use this if you find a problem. Letting me know personally is a great way to get your bug report lost.

Exit

This option is fairly self-explanatory: It quits the game and closes the window.

What it doesn’t do is save your work. You have to do that manually.

Credits

When you have added credits to your game, an option for viewing them will appear in the main menu.

This option won’t appear unless there are credits, since showing an empty credits menu to players would serve no purpose.

Start Game

Choosing the first option “Start new game”, you will be placed into the first room.

Rooms

This room doesn’t really have that much going for it: It’s called “first_room”, which incidentally is also its ID, and it has no meaningful description. Let’s change that now.

Renaming Rooms

There are two ways to rename a room: With a new textual name, or by “shadowing” the name of another room.

Simple Renaming

You can rename anything with this first method. Press the r key on any object you want to rename, and you can type in a new name, before pressing enter.

Shadowing Names

Shadowing room names is only possible for rooms. It involves using the ID of another room, to “shadow” the name.

To do this, press shift + r. A menu will appear, showing every other room in the story. If you have no other rooms, this menu will be empty.

It is worth noting that shadowing room names and descriptions can only work for one level of rooms. That is, you cannot have room 1 shadow the name of room 2 which shadows the name of room 3. This is because you could also then have room 3 shadowing the name of room 1, which would cause an infinite loop.

Describing a Room

Rooms are the only things in stories which can be described. You can describe a room with the e key. The d key is not used, since this would conflict with dropping objects.

The key combination shift + e allows you to shadow the description of another room. Shadowing descriptions follows the same rules as shadowing names.

Adding New Rooms

A world wouldn’t be much with only one room to visit. The way to create rooms - and incidentally exits and objects - is with the c key.

If you press the c key, a menu will appear, allowing you to select what you would like to create.

Selecting Room from the bottom of this menu, will create - and move you to - another empty room.

Moving Between Rooms

While exits are the primary way for players to move between rooms, it is helpful to have a quicker way as a builder.

Pressing the g key brings up a menu of rooms you can use to move quickly between rooms. This obviously bypasses exits, allowing you to get to as yet unlinked rooms.

Exits

Exits are the only way for players to move between rooms. They must be built to link rooms, otherwise there will be no way to access them.

Incidentally, unlinked (or inaccessible) rooms will result in warnings when editing worlds.

Building Exits

To create an exit, again use the c (create) key, and select Exit.

This will bring up a list of rooms (excluding the current one), which - when selected - will construct the exit.

Renaming Exits

You can rename an exit by first selecting it from the exits list, and pressing the r key.

Objects

The second entry in the create menu is for creating objects. You must be in the room where you plan to place the object before you create. Taking the object and dropping it elsewhere will not actually “move” the object, and currently there is no way to relocate objects.

This can be looked at if someone is upset by this lack enough to submit an issue [https://github.com/chrisnorman7/earwax/issues/new?title=Relocating%20Objects%20in%20Stories].

Renaming Objects

You can rename an object by selecting it from the objects list, and pressing the r key.

Object Types

objects can have one of a couple of different types. You can change the object type with the t key.

The object types are listed below:

Cannot Be Taken

This type is best for stationary objects like scenery. It will not be possible to take such objects.

Can Be Taken

Objects of this type can be picked up. Their take action dictates what message and sound is presented to the player when they are taken.

If an object’s take action is not set, the world’s take action will be used instead.

Objects of this type cannot be dropped. If you think that’s stupid, read on (there is another type).

Can Be Dropped

Objects of this type can both be picked up and dropped.

The object’s drop action will be used to provide a message and a sound for when the object is dropped.

If there is no drop action on the object in question, the world’s default drop action will be used instead.

Can Be Used

This final type is not listed in the types menu. It is only applicable when a use action is specified for an object. Otherwise, the object is considered unusable.

It is perfectly possible for an object to be usable but not droppable. It is even possible for an object to be usable, but impossible for that object to be picked up in the first place. Note that this would be pointless, since the use action can only be accessed by the player when the object is in their inventory.

Object Classes

Objects can belong to 0 or more classes. These classes are useful for grouping objects, and will be used to make exits allow or disallow player access in the future.

To keep apprised of the work on exits, please track this issue [https://github.com/chrisnorman7/earwax/issues/5].

To add and remove classes from an object, use the o key.

Object classes can be added and removed with the key combination shift + o.

Messages

Objects, exits, and the world itself all have messages. To set messages, use the m key.

This key will set different messages depending on which category is shown:

	When in the location category, edit the world messages.

	When an entry from the objects category is selected, you can set the message that is shown when any object action is used.

	When an entry from the exits category is selected, you can set the message which is shown when using that exit.

Sounds

You can set sounds for objects and exits, as well as the world itself.

To set sounds, use the s key. This key performs different actions, depending on which category is shown:

	When in the location category, edit the world sounds.

	When an entry from the objects category is selected, you can set the sound which is heard when any object action is used.

	When an entry from the exits category is selected, you can set the sound which is heard when using that exit.

Ambiances

Using the a key, you can edit ambiances for the current room, and for objects.

Exits do not have ambiances, so the a key does nothing when in the exits category.

Actions

Actions are used throughout stories. They can be edited with the shift + a shortcut.

	When in the location category, you can edit (or clear) the default actions for the world.

	When an entry from the objects category is selected, you can edit (or delete) actions for when an object is taken, dropped, or used, or you can edit the custom actions for the given object.

	When an entry from the exits category is selected, you can edit (or clear) the action which is used when the exit is traversed.

Saving Stories

As mentioned in the Save Story section, you can save your story at any time with the keyboard shortcut control + s.

Building Stories

You can build your story into a Python file with the story build command.

Assuming you have a world file named world.yaml, you can convert it to python with the command:

earwax story build world.yaml world.py

This will output world.py. You can then play your story with:

python world.py

If you wish to consolidate all your sounds, you can use the -s switch:

earwax story build world.yaml world.py -s assets

This will copy all your sound files into a folder named assets. Their names will be changed, and the folder structure will be defined by earwax.

A note for screen reader users: It is not recommended that you read the generated python file line-by-line. This is because the line which holds the YAML data for your world can be extremely long, and this negatively impacts screen reader use.

earwax

	earwax package
	Subpackages
	earwax.cmd package
	Subpackages

	Submodules

	Module contents

	earwax.mapping package
	Submodules

	Module contents

	earwax.menus package
	Submodules

	Module contents

	earwax.promises package
	Submodules

	Module contents

	earwax.story package
	Submodules

	Module contents

	Submodules
	earwax.action module

	earwax.action_map module

	earwax.ambiance module

	earwax.config module

	earwax.configuration module

	earwax.conversation_level module

	earwax.credit module

	earwax.dialogue_tree module

	earwax.die module

	earwax.editor module

	earwax.event_matcher module

	earwax.game module

	earwax.game_board module

	earwax.hat_directions module

	earwax.input_modes module

	earwax.level module

	earwax.mixins module

	earwax.networking module

	earwax.point module

	earwax.reverb module

	earwax.rumble_effects module

	earwax.sdl module

	earwax.sound module

	earwax.speech module

	earwax.task module

	earwax.track module

	earwax.types module

	earwax.utils module

	earwax.vault_file module

	earwax.walking_directions module

	earwax.yaml module

	Module contents
	Earwax
	Usage

earwax package

Subpackages

	earwax.cmd package
	Subpackages
	earwax.cmd.subcommands package
	Submodules
	earwax.cmd.subcommands.configure_earwax module

	earwax.cmd.subcommands.conversation_tree module

	earwax.cmd.subcommands.game module

	earwax.cmd.subcommands.game_map module

	earwax.cmd.subcommands.init_project module

	earwax.cmd.subcommands.story module

	earwax.cmd.subcommands.vault module

	Module contents

	Submodules
	earwax.cmd.constants module

	earwax.cmd.game_level module

	earwax.cmd.keys module

	earwax.cmd.main module

	earwax.cmd.project module

	earwax.cmd.project_credit module

	earwax.cmd.variable module

	Module contents
	Command Line

	earwax.mapping package
	Submodules
	earwax.mapping.box module

	earwax.mapping.box_level module

	earwax.mapping.door module

	earwax.mapping.map_editor module

	earwax.mapping.portal module

	Module contents

	earwax.menus package
	Submodules
	earwax.menus.action_menu module

	earwax.menus.config_menu module

	earwax.menus.file_menu module

	earwax.menus.menu module

	earwax.menus.menu_item module

	earwax.menus.reverb_editor module

	Module contents

	earwax.promises package
	Submodules
	earwax.promises.base module

	earwax.promises.staggered_promise module

	earwax.promises.threaded_promise module

	Module contents

	earwax.story package
	Submodules
	earwax.story.context module

	earwax.story.edit_level module

	earwax.story.play_level module

	earwax.story.world module

	Module contents

Submodules

	earwax.action module

	earwax.action_map module

	earwax.ambiance module

	earwax.config module

	earwax.configuration module

	earwax.conversation_level module

	earwax.credit module

	earwax.dialogue_tree module

	earwax.die module

	earwax.editor module

	earwax.event_matcher module

	earwax.game module

	earwax.game_board module

	earwax.hat_directions module

	earwax.input_modes module

	earwax.level module

	earwax.mixins module

	earwax.networking module

	earwax.point module

	earwax.reverb module

	earwax.rumble_effects module

	earwax.sdl module

	earwax.sound module

	earwax.speech module

	earwax.task module

	earwax.track module

	earwax.types module

	earwax.utils module

	earwax.vault_file module

	earwax.walking_directions module

	earwax.yaml module

Module contents

The Earwax game engine.

Earwax

This package is heavily inspired by Flutter [https://flutter.dev/].

Usage

	Begin with a Game object:

from earwax import Game, Level
g = Game()

	Create a level:

l = Level()

	Add actions to allow the player to do things:

@l.action(...)
def action():
 pass

	Create a Pyglet window:

from pyglet.window import Window
w = Window(caption='Earwax Game')

	Run the game you have created:

g.run(w)

There are ready made Level classes for creating menus, and editors.

earwax.cmd package

Subpackages

	earwax.cmd.subcommands package
	Submodules
	earwax.cmd.subcommands.configure_earwax module

	earwax.cmd.subcommands.conversation_tree module

	earwax.cmd.subcommands.game module

	earwax.cmd.subcommands.game_map module

	earwax.cmd.subcommands.init_project module

	earwax.cmd.subcommands.story module

	earwax.cmd.subcommands.vault module

	Module contents

Submodules

	earwax.cmd.constants module

	earwax.cmd.game_level module

	earwax.cmd.keys module

	earwax.cmd.main module

	earwax.cmd.project module

	earwax.cmd.project_credit module

	earwax.cmd.variable module

Module contents

Earwax Script.

Command Line

This program allows you to create games with very little actual coding.

This document will be updated as this program matures.

	
earwax.cmd.cmd_main() → None

	Run the earwax client.

earwax.cmd.subcommands package

Submodules

	earwax.cmd.subcommands.configure_earwax module

	earwax.cmd.subcommands.conversation_tree module

	earwax.cmd.subcommands.game module

	earwax.cmd.subcommands.game_map module

	earwax.cmd.subcommands.init_project module

	earwax.cmd.subcommands.story module

	earwax.cmd.subcommands.vault module

Module contents

A directory containing sub commands for the earwax utility.

earwax.cmd.subcommands.configure_earwax module

Provides the configure_earwax subcommand.

	
earwax.cmd.subcommands.configure_earwax.configure_earwax(args: argparse.Namespace) → None

	Configure earwax, using a earwax.ConfigMenu instance.

earwax.cmd.subcommands.conversation_tree module

Provides commands for working with call response trees.

	
earwax.cmd.subcommands.conversation_tree.edit_convo(args: argparse.Namespace) → None

	Edit a conversation tree.

	
earwax.cmd.subcommands.conversation_tree.new_convo(args: argparse.Namespace) → None

	Create a new conversation tree.

earwax.cmd.subcommands.game module

Provides the game subcommand.

	
earwax.cmd.subcommands.game.new_game(args: argparse.Namespace) → None

	Create a default game.

earwax.cmd.subcommands.game_map module

Provides subcommands for working with maps.

	
earwax.cmd.subcommands.game_map.edit_map(args: argparse.Namespace) → None

	Edit the map at the given filename.

	
earwax.cmd.subcommands.game_map.new_map(args: argparse.Namespace) → None

	Create a new map.

earwax.cmd.subcommands.init_project module

Provides the init_project subcommand.

	
earwax.cmd.subcommands.init_project.init_project(args: argparse.Namespace) → None

	Initialise or update the project at the given directory.

	
earwax.cmd.subcommands.init_project.update() → None

	Update the given path to conform to the latest earwax file structure.

	Parameters

	p – The path to update.

earwax.cmd.subcommands.story module

Provides the story subcommand.

	
earwax.cmd.subcommands.story.build_story(args: argparse.Namespace) → None

	Build the world.

	
earwax.cmd.subcommands.story.copy_action(action: earwax.story.world.WorldAction, destination: pathlib.Path, index: int) → None

	Copy the sound for the given action.

	Parameters

	
	action – The action whose sound will be copied.

	destination – The destination the sound will be copied to.

If this directory does not exist, it will be created before the copy.

	index – The number to base the resulting file name on.

	
earwax.cmd.subcommands.story.copy_actions(actions: List[earwax.story.world.WorldAction], destination: pathlib.Path) → None

	Copy the sounds from a list of action objects.

	Parameters

	
	actions – The list of actions whose sounds will be copied.

	destination – The destination for the copied sounds.

If this directory does not exist, it will be created before the copy.

	
earwax.cmd.subcommands.story.copy_ambiances(ambiances: List[earwax.story.world.WorldAmbiance], destination: pathlib.Path) → None

	Copy all ambiance files.

	Parameters

	
	ambiances – The ambiances whose sounds will be copied.

	destination – The ambiances directory to copy into.

If this directory does not exist, it will be created before copying
begins.

	
earwax.cmd.subcommands.story.copy_path(source: Union[str, pathlib.Path], destination: pathlib.Path) → str

	Copy the given file or folder to the given destination.

	Parameters

	
	source – Where to copy from.

	destination – The destination for the new file.

	
earwax.cmd.subcommands.story.create_story(args: argparse.Namespace) → None

	Create a new story.

	
earwax.cmd.subcommands.story.edit_story(args: argparse.Namespace) → None

	Edit the given story.

	
earwax.cmd.subcommands.story.get_filename(filename: str, index: int) → str

	Return a unique filename.

Given a filename of 'music/track.wav', and an index of 5,
'5.wav' would be returned.

	Parameters

	
	filename – The original filename (can include path).

	index – The index of this filename in whatever list is being iterated
over.

	
earwax.cmd.subcommands.story.make_directory(directory: pathlib.Path) → None

	Make the given directory, if necessary.

if the given directory already exists, print a message to that effect.

Otherwise, create the directory, and print a message about it.

	Parameters

	directory – The directory to create.

	
earwax.cmd.subcommands.story.play_story(args: argparse.Namespace, edit: bool = False) → None

	Load and play a story.

earwax.cmd.subcommands.vault module

Provides subcommands for working with vault files.

	
earwax.cmd.subcommands.vault.compile_vault(args: argparse.Namespace) → None

	Compile the given vault file.

	
earwax.cmd.subcommands.vault.new_vault(args: argparse.Namespace) → None

	Create a new vault file.

earwax.cmd.constants module

Provides various constants used by the script.

earwax.cmd.game_level module

Provides the GameLevel class.

	
class earwax.cmd.game_level.BoxLevelData(bearing: int = NOTHING)

	Bases: earwax.mixins.DumpLoadMixin

A box level.

An instance of this class can be used to build a earwax.BoxLevel
instance.

	
class earwax.cmd.game_level.GameLevel(name: str, data: Union[earwax.cmd.game_level.LevelData, earwax.cmd.game_level.BoxLevelData], scripts: List[earwax.cmd.game_level.GameLevelScript] = NOTHING, id: str = NOTHING)

	Bases: earwax.mixins.DumpLoadMixin

A game level.

This class is used in the GUI so that non-programmers can can create levels
with no code.

	Variables

	
	name – The name of this level.

	data – The data for this level.

	scripts – The scripts that are
attached to this level.

	
class earwax.cmd.game_level.GameLevelScript(name: str, trigger: earwax.cmd.game_level.Trigger, id: str = NOTHING)

	Bases: earwax.mixins.DumpLoadMixin

A script which is attached to a game level.

	
code

	Return the code of this script.

If script_path does not exist, an empty string will be
returned.

	
script_name

	Return the script name (although not the path) for this script.

If you want the path, use the script_path attribute.

	
script_path

	Return the path where code for this script resides.

If you want the filename, use the script_name attribute.

	
class earwax.cmd.game_level.LevelData

	Bases: earwax.mixins.DumpLoadMixin

A standard earwax level.

An instance of this class can be used to build a earwax.Level
instance.

	
class earwax.cmd.game_level.Trigger(symbol: Optional[str] = None, modifiers: List[str] = NOTHING, mouse_button: Optional[str] = None, hat_directions: Optional[str] = None, joystick_button: Optional[int] = None)

	Bases: earwax.mixins.DumpLoadMixin

A trigger that can activate a function in a game.

earwax.cmd.keys module

Provides keys for templates.

earwax.cmd.main module

The Earwax command line utility.

This module provides the cmd_main function, and all sub commands.

To run the client:

	Make sure Earwax and all its dependencies are up to date.

	
	In the folder where you wish to work, type earwax. This is a standard

	command line utility, which should provide enough of its own help that no
replication is required in this document.

NOTE: At the time of writing, only the earwax story command actually does
all that much that is useful. Everything else needs fleshing out.

If you want to create more subcommands, add them in the subcommands directory,
then register them with the subcommand() method.

	
earwax.cmd.main.add_help(subparser: argparse._SubParsersAction) → argparse.ArgumentParser

	Add a help command to any subcommand.

	
earwax.cmd.main.add_subcommands(_parser: argparse.ArgumentParser) → argparse._SubParsersAction

	Add subcommands to any parser.

	Parameters

	_parser – The parser to add subcommands to.

	
earwax.cmd.main.cmd_help(subcommand: argparse._SubParsersAction) → Callable[[argparse.Namespace], None]

	Return a command function that will show all subcommands.

	
earwax.cmd.main.cmd_main() → None

	Run the earwax client.

	
earwax.cmd.main.subcommand(name: str, func: Callable[[argparse.Namespace], None], subparser: argparse._SubParsersAction, formatter_class: Type[argparse.HelpFormatter] = <class 'argparse.ArgumentDefaultsHelpFormatter'>, **kwargs) → argparse.ArgumentParser

	Add a subcommand to the argument parser.

	Parameters

	
	name – The name of the new command.

	func – The function that will be called when this subcommand is used.

	subparser – The parser to add the sub command to.

	kwargs – Keyword arguments to be passed to commands.add_parser.

earwax.cmd.project module

Provides the Workspace class.

	
class earwax.cmd.project.Project(name: str, author: str = NOTHING, description: str = NOTHING, version: str = NOTHING, requirements: str = NOTHING, credits: List[earwax.cmd.project_credit.ProjectCredit] = NOTHING, variables: List[earwax.cmd.variable.Variable] = NOTHING, levels: List[earwax.cmd.game_level.GameLevel] = NOTHING)

	Bases: earwax.mixins.DumpLoadMixin

An earwax project.

This object holds the id of the initial map (if any), as well as global
variables the user can create with the global subcommand.

	Variables

	
	name – The name of this project.

	author – The author of this project.

	description – A description for this
project.

	version – The version string of this
project.

	initial_map_id – The id of the first map
to load with the game.

	credits – A list of credits for this
project.

	variables – The variables created for this
project.

earwax.cmd.project_credit module

Provides the ProjectCredit class.

	
class earwax.cmd.project_credit.ProjectCredit(name: str, url: str, sound: Optional[str], loop: bool)

	Bases: earwax.mixins.DumpLoadMixin

A representation of the earwax.Credit class.

This class has a different name to avoid possible confusion.

	Variables

	
	name – The name of what is
being credited.

	url – A URL for this credit.

	sound – The sound that will
play when this credit is shown in a menu.

	loop – Whether or not
ProjectCredit.sound should loop.

	
path

	Return ProjectCredit.sound as a path.

earwax.cmd.variable module

Provides the Variable class.

	
class earwax.cmd.variable.Variable(name: str, type: earwax.cmd.variable.VariableTypes, value: T, id: str = NOTHING)

	Bases: typing.Generic, earwax.mixins.DumpLoadMixin

A variable in a game made with the earwax script.

	Variables

	
	name – The name of the variable.

	type – The type of
value.

	value – The value this variable holds.

	id – The id of this variable.

	
get_type() → earwax.cmd.variable.VariableTypes

	Return the type of this variable.

This method returns a member of VariableTypes.

	
classmethod load(data: Dict[str, Any], *args) → earwax.cmd.variable.Variable

	Load a variable, and check its type.

	Parameters

	value – The value to load.

	
class earwax.cmd.variable.VariableTypes

	Bases: enum.Enum

Provides the possible types of variable.

	Variables

	
	type_int – An integer.

	type_float – A floating point
number.

	type_string – a string.

	type_bool – A boolean value.

	
type_bool = 3

	

	
type_float = 1

	

	
type_int = 0

	

	
type_string = 2

	

earwax.mapping package

Submodules

	earwax.mapping.box module

	earwax.mapping.box_level module

	earwax.mapping.door module

	earwax.mapping.map_editor module

	earwax.mapping.portal module

Module contents

Mapping functions and classes for Earwax.

This module is inspired by Camlorn’s post at this link [https://forum.audiogames.net/post/565561/#p565561].

All credit goes to him for the idea.

	
class earwax.mapping.Box(game: Game, start: earwax.point.Point, end: earwax.point.Point, name: Optional[str] = None, surface_sound: Optional[pathlib.Path] = None, wall_sound: Optional[pathlib.Path] = None, type: earwax.mapping.box.BoxTypes = NOTHING, data: Optional[T] = None, stationary: bool = NOTHING, reverb: Optional[object] = NOTHING, box_level: Optional[BoxLevel] = None)

	Bases: typing.Generic, earwax.mixins.RegisterEventMixin

A box on a map.

You can create instances of this class either singly, or by using the
earwax.Box.create_row() method.

If you already have a list of boxes, you can fit them all onto one map with
the earwax.Box.create_fitted() method.

Boxes can be assigned arbitrary user data:

b: Box[Enemy] = Box(start, end, data=Enemy())
b.data.do_something()

In addition to the coordinates supplied to this class’s constructor, a
earwax.BoxBounds instance is created as earwax.Box.bounds.

This class uses the pyglet.event [https://pyglet.readthedocs.io/en/latest/modules/event.html] framework,
so you can register and dispatch events in the same way you would with
pyglet.window.Window, or any other EventDispatcher subclass.

	Variables

	
	game – The game that this box will work with.

	start – The coordinates at the bottom rear left corner of
this box.

	end – The coordinates at the top front right corner of
this box.

	name – An optional name for this box.

	surface_sound – The sound that should be heard when
walking in this box.

	wall_sound – The sound that should be heard when colliding
with walls in this box.

	type – The type of this box.

	data – Arbitrary data for this box.

	bounds – The bounds of this box.

	centre – The point that lies at the centre of this box.

	reverb – The reverb that is assigned to this box.

	
close() → None

	Close the attached door.

If this box is a door, set the open attribute of
its data to False, and play the appropriate
sound. Otherwise, raise earwax.NotADoor.

	Parameters

	door – The door to close.

	
contains_point(coordinates: earwax.point.Point) → bool

	Return whether or not this box contains the given point.

Returns True if this box spans the given coordinates, False
otherwise.

	Parameters

	coordinates – The coordinates to check.

	
could_fit(box: earwax.mapping.box.Box) → bool

	Return whether or not the given box could be contained by this one.

Returns True if the given box could be contained by this box,
False otherwise.

This method behaves like the contains_point() method,
except that it works with Box instances, rather than
Point instances.

This method simply checks that the start and
end points would fit inside this box.

	Parameters

	box – The box whose bounds will be checked.

	
classmethod create_fitted(game: Game, children: List[Box], pad_start: Optional[earwax.point.Point] = None, pad_end: Optional[earwax.point.Point] = None, **kwargs) → BoxType

	Return a box that fits all of children inside itself.

Pass a list of Box instances, and you’ll get a box
with its start, and end
attributes set to match the outer bounds of the provided children.

You can use pad_start, and pad_end to add or subtract from the
calculated start and end coordinates.

	Parameters

	
	children – The list of Box instances to
encapsulate.

	pad_start – A point to add to the calculated start coordinates.

	pad_end – A point to add to the calculated end coordinates.

	kwargs – The extra keyword arguments to pass to Box.__init__.

	
classmethod create_row(game: Game, start: earwax.point.Point, size: earwax.point.Point, count: int, offset: earwax.point.Point, get_name: Optional[Callable[[int], str]] = None, on_create: Optional[Callable[[Box], None]] = None, **kwargs) → List[BoxType]

	Generate a list of boxes.

This method is useful for creating rows of buildings, or rooms on a
corridor to name a couple of examples.

It can be used like so:

offices = Box.create_row(
 game, # Every Box instance needs a game.
 Point(0, 0), # The bottom_left corner of the first box.
 Point(3, 2, 0), # The size of each box.
 3, # The number of boxes to build.
 # The next argument is how far to move from the top right
 # corner of each created box:
 Point(1, 0, 0),
 # We want to name each room. For that, there is a function!
 get_name=lambda i: f'Room {i + 1}',
 # Let's make them all rooms.
 type=RoomTypes.room
)

This will result in a list containing 3 rooms:

	The first from (0, 0, 0) to (2, 1, 0)

	The second from (3, 0, 0) to (5, 1, 0)

	And the third from (6, 0, 0) to (8, 1, 0)

PLEASE NOTE:
If none of the size coordinates are >= 1, the top right coordinate
will be less than the bottom left, so
get_containing_box() won’t ever find it.

	Parameters

	
	start – The start coordinate of the first
box.

	size – The size of each box.

	count – The number of boxes to build.

	offset – The distance between the boxes.

If no coordinate of the given value is >= 1, overlaps will
occur.

	get_name – A function which should return an appropriate name.

This function will be called with the current position in the loop.

0 for the first room, 1 for the second, and so on.

	on_create – A function which will be called after each box is
created.

The only provided argument will be the box that was just created.

	kwargs – Extra keyword arguments to be passed to
Box.__init__.

	
get_nearest_point(point: earwax.point.Point) → earwax.point.Point

	Return the point on this box nearest to the provided point.

	Parameters

	point – The point to start from.

	
handle_door() → None

	Open or close the door attached to this box.

	
handle_portal() → None

	Activate a portal attached to this box.

	
is_door

	Return True if this box is a door.

	
is_portal

	Return True if this box is a portal.

	
is_wall(p: earwax.point.Point) → bool

	Return True if the provided point is inside a wall.

	Parameters

	p – The point to interrogate.

	
classmethod maze(game: Game, grid: ndarray, box_height: int = 3) → Generator[Box, None, None]

	Return a generator containing a list of boxes.

This constructor supports mazes generated by mazelib for example.

	
on_activate() → None

	Handle the enter key.

This event is dispatched when the player presses the enter key.

It is guaranteed that the instance this event is dispatched on is the
one the player is stood on.

	
on_close() → None

	Handle this box being closed.

	
on_collide(coordinates: earwax.point.Point) → None

	Play an appropriate wall sound.

This function will be called by the Pyglet event framework, and should
be called when a player collides with this box.

	
on_footstep(bearing: float, coordinates: earwax.point.Point) → None

	Play an appropriate surface sound.

This function will be called by the Pyglet event framework, and should
be called when a player is walking on this box.

This event is dispatched by earwax.BoxLevel.move upon a
successful move.

	Parameters

	coordinates – The coordinates the player has just moved to.

	
on_open() → None

	Handle this box being opened.

	
open() → None

	Open the attached door.

If this box is a door, set the open attribute of
its data to True, and play the appropriate
sound. Otherwise, raise earwax.NotADoor.

	Parameters

	box – The box to open.

	
scheduled_close(dt: float) → None

	Call close().

This method will be called by pyglet.clock.schedule_once.

	Parameters

	dt – The dt parameter expected by Pyglet’s schedule
functions.

	
sound_manager

	Return a suitable sound manager.

	
class earwax.mapping.BoxBounds(bottom_back_left: earwax.point.Point, top_front_right: earwax.point.Point)

	Bases: object

Bounds for a earwax.Box instance.

	Variables

	
	bottom_back_left – The bottom back left point.

	top_front_right – The top front right point.

	bottom_front_left – The bottom front left point.

	bottom_front_right – The bottom front right point.

	bottom_back_right – The bottom back right point.

	top_back_left – The top back left point.

	top_front_left – The top front left point.

	top_back_right – The top back right point.

	
area

	Return the area of the box.

	
depth

	Get the depth of this box (front to back).

	
height

	Return the height of this box.

	
is_edge(p: earwax.point.Point) → bool

	Return True if p represents an edge.

	Parameters

	p – The point to interrogate.

	
volume

	Return the volume of this box.

	
width

	Return the width of this box.

	
class earwax.mapping.BoxTypes

	Bases: enum.Enum

The type of a box.

	Variables

	
	empty – Empty space.

Boxes of this type can be traversed wit no barriers.

	room – An open room with walls around the edge.

Boxes of this type can be entered by means of a door. The programmer
must provide some means of exit.

	solid – Signifies a solid, impassible barrier.

Boxes of this type cannot be traversed.

	
empty = 0

	

	
room = 1

	

	
solid = 2

	

	
exception earwax.mapping.NotADoor

	Bases: earwax.mapping.box.BoxError

The current box is not a door.

	
exception earwax.mapping.NotAPortal

	Bases: earwax.mapping.box.BoxError

The current box is not a portal.

	
class earwax.mapping.BoxLevel(game: Game, boxes: List[earwax.mapping.box.Box[typing.Any][Any]] = NOTHING, coordinates: earwax.point.Point = NOTHING, bearing: int = 0, current_box: Optional[earwax.mapping.box_level.CurrentBox] = None)

	Bases: earwax.level.Level

A level that deals with sound generation for boxes.

This level can be used in your games. Simply bind the various action
methods (listed below) to whatever triggers suit your purposes.

Some of the attributes of this class refer to a “perspective”. This could
theoretically be anything you want, but most likely refers to the player.
Possible exceptions include if you made an instance to represent some kind
of long range vision for the player.

Action-ready Methods

	move().

	show_coordinates()

	show_facing()

	turn()

	show_nearest_door()

	describe_current_box()

	Variables

	
	box – The box that this level will work with.

	coordinates – The coordinates of the perspective.

	bearing – The direction the perspective is facing.

	current_box – The most recently walked over box.

If you don’t set this attribute when creating the instance, then the
first time the player moves using the move()
method, the name of the box they are standing on will be spoken.

	reverb – An optional reverb to play sounds through.

You shouldn’t write to this property, instead use the
connect_reverb() method to set a new reverb, and
disconnect_reverb() to clear.

	
activate(door_distance: float = 2.0) → Callable[[], None]

	Return a function that can be call when the enter key is pressed.

First we check if the current box is a portal. If it is, then we call
handle_portal().

If it is not, we check to see if there is a door close enough to be
opened or closed. If there is, then we call
handle_door() on it.

If none of this works, and there is a current box, dispatch the
on_activate() event to let the box do its own thing.

	Parameters

	door_distance – How close doors have to be for this method to
open or close them.

	
add_box(box: earwax.mapping.box.Box[typing.Any][Any]) → None

	Add a box to self.boxes.

	Parameters

	box – The box to add.

	
add_boxes(boxes: Iterable[earwax.mapping.box.Box]) → None

	Add multiple boxes with one call.

	Parameters

	boxes – An iterable for boxes to add.

	
add_default_actions() → None

	Add some default actions.

This method adds the following actions:

	Move forward: W

	Turn 180 degrees: S

	Turn 45 degrees left: A

	Turn 45 degrees right: D

	Show coordinates: C

	Show the facing direction: F

	Describe current box: X

	Speak nearest door: Z

	Activate nearby objects: Return

	
calculate_coordinates(distance: float, bearing: int) → Tuple[float, float]

	Calculate coordinates at the given distance in the given direction.

Used by move() to calculate new coordinates.

Override this method if you want to change the algorithm used to
calculate the target coordinates.

Please bear in mind however, that the coordinates this method returns
should always be 2d.

	Parameters

	
	distance – The distance which should be used.

	bearing – The bearing the new coordinates are in.

This value may not be the same as self.bearing.

	
collide(box: earwax.mapping.box.Box[typing.Any][Any], coordinates: earwax.point.Point) → None

	Handle collitions.

Called to run collision code on a box.

	Parameters

	
	box – The box the player collided with.

	coordinates – The coordinates the player was trying to reach.

	
describe_current_box() → None

	Describe the current box.

	
get_angle_between(other: earwax.point.Point) → float

	Return the angle between the perspective and the other coordinates.

This function takes into account self.bearing.

	Parameters

	other – The target coordinates.

	
get_boxes(t: Any) → List[earwax.mapping.box.Box]

	Return a list of boxes of the current type.

If no boxes are found, an empty list is returned.

	Parameters

	t – The type of the boxes.

	
get_containing_box(coordinates: earwax.point.Point) → Optional[earwax.mapping.box.Box]

	Return the box that spans the given coordinates.

If no box is found, None will be returned.

This method scans self.boxes using the
sort_boxes() method.

	Parameters

	coordinates – The coordinates the box should span.

	
get_current_box() → Optional[earwax.mapping.box.Box]

	Get the box that lies at the current coordinates.

	
handle_box(box: earwax.mapping.box.Box[typing.Any][Any]) → None

	Handle a bulk standard box.

The coordinates have already been set, and the on_footstep event
dispatched, so all that is left is to speak the name of the new box, if
it is different to the last one, update self.reverb if necessary, and store the new box.

	
move(distance: float = 1.0, vertical: Optional[float] = None, bearing: Optional[int] = None) → Callable[[], None]

	Return a callable that allows the player to move on the map.

If the move is successful (I.E.: There is a box at the destination
coordinates), the on_move() event is dispatched.

If not, then on_move_fail() is dispatched.

	Parameters

	
	distance – The distance to move.

	vertical – An optional adjustment to be added to the vertical
position.

	bearing – An optional direction to move in.

If this value is None, then self.bearing will be used.

	
nearest_by_type(start: earwax.point.Point, data_type: Any, same_z: bool = True) → Optional[earwax.mapping.box_level.NearestBox]

	Get the nearest box to the given point by type.

If no boxes of the given type are found, None will be returned.

	Parameters

	
	start – The point to start looking from.

	data_type – The type of box data to
search for.

	same_z – If this value is True, only boxes on the same z axis
will be considered.

	
nearest_door(start: earwax.point.Point, same_z: bool = True) → Optional[earwax.mapping.box_level.NearestBox]

	Get the nearest door.

Iterates over all doors, and returned the nearest one.

	Parameters

	
	start – The coordinates to start from.

	same_z – If True, then doors on different levels will not be
considered.

	
nearest_portal(start: earwax.point.Point, same_z: bool = True) → Optional[earwax.mapping.box_level.NearestBox]

	Return the nearest portal.

	Parameters

	
	start – The coordinates to start from.

	same_z – If True, then portals on different levels will not
be considered.

	
on_move_fail(distance: float, vertical: Optional[float], bearing: int, coordinates: earwax.point.Point) → None

	Handle a move failure.

An event that will be dispatched when the
move() action has been used, but no move was
performed.

	Parameters

	
	distance – The distance value that was passed to move().

	vertical – The vertical value that was passed to move.

	bearing – The bearing argument that was passed to move,
or self.bearing.

	
on_move_success() → None

	Handle a successful move.

An event that will be dispatched when the
move() action is used.

By default, this method plays the correct footstep sound.

	
on_push() → None

	Set listener orientation, and start ambiances and tracks.

	
on_turn() → None

	Handle turning.

An event that will dispatched when the turn()
action is used.

	
register_box(box: earwax.mapping.box.Box) → None

	Register a box that is already in the boxes list.

	Parameters

	box – The box to register.

	
remove_box(box: earwax.mapping.box.Box[typing.Any][Any]) → None

	Remove a box from self.boxes.

	Parameters

	box – The box to remove.

	
set_bearing(angle: int) → None

	Set the direction of travel and the listener’s orientation.

	Parameters

	angle – The bearing (in degrees).

	
set_coordinates(p: earwax.point.Point) → None

	Set the current coordinates.

Also set listener position.

	Parameters

	p – The new point to assign to self.coordinates.

	
show_coordinates(include_z: bool = False) → Callable[[], None]

	Speak the current coordinates.

	
show_facing(include_angle: bool = True) → Callable[[], None]

	Return a function that will let you see the current bearing as text.

For example:

l = BoxLevel(...)
l.action('Show facing', symbol=key.F)(l.show_facing())

	Parameters

	include_angle – If True, then the actual angle will be shown
along with the direction name.

	
show_nearest_door(max_distance: Optional[float] = None) → Callable[[], None]

	Return a callable that will speak the position of the nearest door.

	Parameters

	max_distance – The maximum distance between the current
coordinates and the nearest door where the door will still be
reported.

If this value is None, then any door will be reported.

	
sort_boxes() → List[earwax.mapping.box.Box]

	Return children sorted by area.

	
turn(amount: int) → Callable[[], None]

	Return a turn function.

Return a function that will turn the perspective by the given amount
and dispatch the on_turn event.

For example:

l = BoxLevel(...)
l.action('Turn right', symbol=key.D)(l.turn(45))
l.action('Turn left', symbol=key.A)(l.turn(-45))

The resulting angle will always be in the range 0-359.

	Parameters

	amount – The amount to turn by.

Positive numbers turn clockwise, while negative numbers turn
anticlockwise.

	
walls_between(end: earwax.point.Point, start: Optional[earwax.point.Point] = None) → int

	Return the number of walls between two points.

	Parameters

	
	end – The target coordinates.

	start – The coordinates to start at.

If this value is None, then the current
coordinates will be used.

	
class earwax.mapping.CurrentBox(coordinates: earwax.point.Point, box: earwax.mapping.box.Box[typing.Any][Any])

	Bases: object

Store a reference to the current box.

This class stores the position too, so that caching can be performed.

	Variables

	
	coordinates – The coordinates that were last
checked.

	box – The last current box.

	
class earwax.mapping.NearestBox(box: earwax.mapping.box.Box, coordinates: earwax.point.Point, distance: float)

	Bases: object

A reference to the nearest box.

	Variables

	
	box – The box that was found.

	coordinates – The nearest coordinates to the ones
specified.

	distance – The distance between the supplied
coordinates, and coordinates.

	
class earwax.mapping.Door(open: bool = True, closed_sound: Optional[pathlib.Path] = None, open_sound: Optional[pathlib.Path] = None, close_sound: Optional[pathlib.Path] = None, close_after: Union[float, Tuple[float, float], None] = None, can_open: Optional[Callable[[], bool]] = None, can_close: Optional[Callable[[], bool]] = None)

	Bases: object

An object that can be added to a box to optionally block travel.

Doors can currently either be open or closed. When opened, they can
optionally close after a specified time:

Door() # Standard open door.
Door(open=False) # Closed door.
Door(close_after=5.0) # Will automatically close after 5 seconds.
A door that will automatically close between 5 and 10 seconds after
it has been opened:
Door(close_after=(5.0, 10.0)

	Variables

	
	open – Whether or not this box can be walked on.

If this value is False, then the player will hear
closed_sound when trying to walk on this box.

If this value is True, the player will be able to enter the box as
normal.

	closed_sound – The sound that will be heard if
open is False.

	open_sound – The sound that will be heard when opening
this door.

	close_sound – The sound that will be heard when closing
this door.

	close_after – When (if ever) to close the door after it
has been opened.

This attribute supports 3 possible values:

	None: The door will not close on its own.

	
	A tuple of two positive floats a and b: A random number

	between a and b will be selected, and the door will
automatically close after that time.

	A float: The exact time the door will automatically close after.

	can_open – An optional method which will be used to
decide whether or not this door can be opened at this time.

This method must return True or False, and must handle any
messages which should be sent to the player.

	can_close – An optional method which will be used to
decide whether or not this door can be closed at this time.

This method must return True or False, and must handle any
messages which should be sent to the player.

	
class earwax.mapping.MapEditor(game: Game, boxes: List[earwax.mapping.box.Box[typing.Any][Any]] = NOTHING, coordinates: earwax.point.Point = NOTHING, bearing: int = 0, current_box: Optional[earwax.mapping.box_level.CurrentBox] = None, filename: Optional[pathlib.Path] = None, context: earwax.mapping.map_editor.MapEditorContext = NOTHING)

	Bases: earwax.mapping.box_level.BoxLevel

A level which can be used for editing maps.

When this level talks about a map, it talks about a
earwax.mapping.map_editor.LevelMap instance.

	
box_menu(box: earwax.mapping.map_editor.MapEditorBox) → None

	Push a menu to configure the provided box.

	
box_sound(template: earwax.mapping.map_editor.BoxTemplate, name: str) → Callable[[], Generator[None, None, None]]

	Push an editor for setting the given sound.

	Parameters

	
	template – The template to modify.

	name – The name of the sound to modify.

	
box_sounds() → None

	Push a menu for configuring sounds.

	
boxes_menu() → None

	Push a menu to select a box to configure.

If there is only 1 box, it will not be shown.

	
complain_box() → None

	Complain about there being no box.

	
create_box() → None

	Create a box, then call box_menu().

	
get_default_context() → earwax.mapping.map_editor.MapEditorContext

	Return a suitable context.

	
id_box() → Generator[None, None, None]

	Change the ID for the current box.

	
label_box() → Generator[None, None, None]

	Rename the current box.

	
on_move_fail(distance: float, vertical: Optional[float], bearing: int, coordinates: earwax.point.Point) → None

	Tell the user their move failed.

	
point_menu(template: earwax.mapping.map_editor.BoxTemplate, point: earwax.mapping.map_editor.BoxPoint) → Callable[[], None]

	Push a menu for configuring individual points.

	
points_menu() → None

	Push a menu for moving the current box.

	
rename_box() → Generator[None, None, None]

	Rename the current box.

	
save() → None

	Save the map level.

	
class earwax.mapping.MapEditorContext(level: MapEditor, level_map: earwax.mapping.map_editor.LevelMap, template_ids: Dict[str, earwax.mapping.map_editor.BoxTemplate] = NOTHING, box_ids: Dict[str, earwax.mapping.box.Box[str][str]] = NOTHING)

	Bases: object

A context to hold map information.

This class acts as an interface between a
LevelMap instance, and a
MapEditor instance.

	
add_template(template: earwax.mapping.map_editor.BoxTemplate, box: Optional[earwax.mapping.map_editor.MapEditorBox] = None) → None

	Add a template to this context.

This method will add the given template to its
box_template_ids
dictionary.

	Parameters

	template – The template to add.

	
reload_template(template: earwax.mapping.map_editor.BoxTemplate) → None

	Reload the given template.

This method recreates the box associated with the given template.

	Parameters

	template – The template to reload.

	
to_box(template: earwax.mapping.map_editor.BoxTemplate) → earwax.mapping.map_editor.MapEditorBox

	Return a box from a template.

	Parameters

	template – The template to convert.

	
to_point(data: earwax.mapping.map_editor.BoxPoint) → earwax.point.Point

	Return a point from the given data.

	Parameters

	data – The BoxPoint to load the point from.

	
class earwax.mapping.Portal(level: BoxLevel, coordinates: earwax.point.Point, bearing: Optional[int] = None, enter_sound: Optional[pathlib.Path] = None, exit_sound: Optional[pathlib.Path] = None, can_use: Optional[Callable[[], bool]] = None)

	Bases: earwax.mixins.RegisterEventMixin

A portal to another map.

An object that can be added to a earwax.Box to make a link
between two maps.

This class implements pyglet.event.EventDispatcher, so events can be
registered and dispatched on it.

The currently-registered events are:

	on_enter()

	on_exit()

	Variables

	
	level – The destination level.

	coordinates – The exit coordinates.

	bearing – If this value is None, then it will be
used for the player’s bearing after this portal is used. Otherwise, the
bearing from the old level will be used.

	enter_sound – The sound that should play when entering
this portal.

This sound is probably only used when an NPC uses the portal.

	exit_sound – The sound that should play when exiting
this portal.

This is the sound that the player will hear when using the portal.

	can_use – An optional method which will be called to
ensure that this portal can be used at this time.

This function should return True or False, and should handle
any messages which should be sent to the player.

	
on_enter() → None

	Handle a player entering this portal.

	
on_exit() → None

	Handle a player exiting this portal.

earwax.mapping.box module

Provides box-related classes, functions, and exceptions.

	
class earwax.mapping.box.Box(game: Game, start: earwax.point.Point, end: earwax.point.Point, name: Optional[str] = None, surface_sound: Optional[pathlib.Path] = None, wall_sound: Optional[pathlib.Path] = None, type: earwax.mapping.box.BoxTypes = NOTHING, data: Optional[T] = None, stationary: bool = NOTHING, reverb: Optional[object] = NOTHING, box_level: Optional[BoxLevel] = None)

	Bases: typing.Generic, earwax.mixins.RegisterEventMixin

A box on a map.

You can create instances of this class either singly, or by using the
earwax.Box.create_row() method.

If you already have a list of boxes, you can fit them all onto one map with
the earwax.Box.create_fitted() method.

Boxes can be assigned arbitrary user data:

b: Box[Enemy] = Box(start, end, data=Enemy())
b.data.do_something()

In addition to the coordinates supplied to this class’s constructor, a
earwax.BoxBounds instance is created as earwax.Box.bounds.

This class uses the pyglet.event [https://pyglet.readthedocs.io/en/latest/modules/event.html] framework,
so you can register and dispatch events in the same way you would with
pyglet.window.Window, or any other EventDispatcher subclass.

	Variables

	
	game – The game that this box will work with.

	start – The coordinates at the bottom rear left corner of
this box.

	end – The coordinates at the top front right corner of
this box.

	name – An optional name for this box.

	surface_sound – The sound that should be heard when
walking in this box.

	wall_sound – The sound that should be heard when colliding
with walls in this box.

	type – The type of this box.

	data – Arbitrary data for this box.

	bounds – The bounds of this box.

	centre – The point that lies at the centre of this box.

	reverb – The reverb that is assigned to this box.

	
close() → None

	Close the attached door.

If this box is a door, set the open attribute of
its data to False, and play the appropriate
sound. Otherwise, raise earwax.NotADoor.

	Parameters

	door – The door to close.

	
contains_point(coordinates: earwax.point.Point) → bool

	Return whether or not this box contains the given point.

Returns True if this box spans the given coordinates, False
otherwise.

	Parameters

	coordinates – The coordinates to check.

	
could_fit(box: earwax.mapping.box.Box) → bool

	Return whether or not the given box could be contained by this one.

Returns True if the given box could be contained by this box,
False otherwise.

This method behaves like the contains_point() method,
except that it works with Box instances, rather than
Point instances.

This method simply checks that the start and
end points would fit inside this box.

	Parameters

	box – The box whose bounds will be checked.

	
classmethod create_fitted(game: Game, children: List[Box], pad_start: Optional[earwax.point.Point] = None, pad_end: Optional[earwax.point.Point] = None, **kwargs) → BoxType

	Return a box that fits all of children inside itself.

Pass a list of Box instances, and you’ll get a box
with its start, and end
attributes set to match the outer bounds of the provided children.

You can use pad_start, and pad_end to add or subtract from the
calculated start and end coordinates.

	Parameters

	
	children – The list of Box instances to
encapsulate.

	pad_start – A point to add to the calculated start coordinates.

	pad_end – A point to add to the calculated end coordinates.

	kwargs – The extra keyword arguments to pass to Box.__init__.

	
classmethod create_row(game: Game, start: earwax.point.Point, size: earwax.point.Point, count: int, offset: earwax.point.Point, get_name: Optional[Callable[[int], str]] = None, on_create: Optional[Callable[[Box], None]] = None, **kwargs) → List[BoxType]

	Generate a list of boxes.

This method is useful for creating rows of buildings, or rooms on a
corridor to name a couple of examples.

It can be used like so:

offices = Box.create_row(
 game, # Every Box instance needs a game.
 Point(0, 0), # The bottom_left corner of the first box.
 Point(3, 2, 0), # The size of each box.
 3, # The number of boxes to build.
 # The next argument is how far to move from the top right
 # corner of each created box:
 Point(1, 0, 0),
 # We want to name each room. For that, there is a function!
 get_name=lambda i: f'Room {i + 1}',
 # Let's make them all rooms.
 type=RoomTypes.room
)

This will result in a list containing 3 rooms:

	The first from (0, 0, 0) to (2, 1, 0)

	The second from (3, 0, 0) to (5, 1, 0)

	And the third from (6, 0, 0) to (8, 1, 0)

PLEASE NOTE:
If none of the size coordinates are >= 1, the top right coordinate
will be less than the bottom left, so
get_containing_box() won’t ever find it.

	Parameters

	
	start – The start coordinate of the first
box.

	size – The size of each box.

	count – The number of boxes to build.

	offset – The distance between the boxes.

If no coordinate of the given value is >= 1, overlaps will
occur.

	get_name – A function which should return an appropriate name.

This function will be called with the current position in the loop.

0 for the first room, 1 for the second, and so on.

	on_create – A function which will be called after each box is
created.

The only provided argument will be the box that was just created.

	kwargs – Extra keyword arguments to be passed to
Box.__init__.

	
get_nearest_point(point: earwax.point.Point) → earwax.point.Point

	Return the point on this box nearest to the provided point.

	Parameters

	point – The point to start from.

	
handle_door() → None

	Open or close the door attached to this box.

	
handle_portal() → None

	Activate a portal attached to this box.

	
is_door

	Return True if this box is a door.

	
is_portal

	Return True if this box is a portal.

	
is_wall(p: earwax.point.Point) → bool

	Return True if the provided point is inside a wall.

	Parameters

	p – The point to interrogate.

	
classmethod maze(game: Game, grid: ndarray, box_height: int = 3) → Generator[Box, None, None]

	Return a generator containing a list of boxes.

This constructor supports mazes generated by mazelib for example.

	
on_activate() → None

	Handle the enter key.

This event is dispatched when the player presses the enter key.

It is guaranteed that the instance this event is dispatched on is the
one the player is stood on.

	
on_close() → None

	Handle this box being closed.

	
on_collide(coordinates: earwax.point.Point) → None

	Play an appropriate wall sound.

This function will be called by the Pyglet event framework, and should
be called when a player collides with this box.

	
on_footstep(bearing: float, coordinates: earwax.point.Point) → None

	Play an appropriate surface sound.

This function will be called by the Pyglet event framework, and should
be called when a player is walking on this box.

This event is dispatched by earwax.BoxLevel.move upon a
successful move.

	Parameters

	coordinates – The coordinates the player has just moved to.

	
on_open() → None

	Handle this box being opened.

	
open() → None

	Open the attached door.

If this box is a door, set the open attribute of
its data to True, and play the appropriate
sound. Otherwise, raise earwax.NotADoor.

	Parameters

	box – The box to open.

	
scheduled_close(dt: float) → None

	Call close().

This method will be called by pyglet.clock.schedule_once.

	Parameters

	dt – The dt parameter expected by Pyglet’s schedule
functions.

	
sound_manager

	Return a suitable sound manager.

	
class earwax.mapping.box.BoxBounds(bottom_back_left: earwax.point.Point, top_front_right: earwax.point.Point)

	Bases: object

Bounds for a earwax.Box instance.

	Variables

	
	bottom_back_left – The bottom back left point.

	top_front_right – The top front right point.

	bottom_front_left – The bottom front left point.

	bottom_front_right – The bottom front right point.

	bottom_back_right – The bottom back right point.

	top_back_left – The top back left point.

	top_front_left – The top front left point.

	top_back_right – The top back right point.

	
area

	Return the area of the box.

	
depth

	Get the depth of this box (front to back).

	
height

	Return the height of this box.

	
is_edge(p: earwax.point.Point) → bool

	Return True if p represents an edge.

	Parameters

	p – The point to interrogate.

	
volume

	Return the volume of this box.

	
width

	Return the width of this box.

	
exception earwax.mapping.box.BoxError

	Bases: Exception

General box level error.

	
class earwax.mapping.box.BoxTypes

	Bases: enum.Enum

The type of a box.

	Variables

	
	empty – Empty space.

Boxes of this type can be traversed wit no barriers.

	room – An open room with walls around the edge.

Boxes of this type can be entered by means of a door. The programmer
must provide some means of exit.

	solid – Signifies a solid, impassible barrier.

Boxes of this type cannot be traversed.

	
empty = 0

	

	
room = 1

	

	
solid = 2

	

	
exception earwax.mapping.box.NotADoor

	Bases: earwax.mapping.box.BoxError

The current box is not a door.

	
exception earwax.mapping.box.NotAPortal

	Bases: earwax.mapping.box.BoxError

The current box is not a portal.

earwax.mapping.box_level module

Provides the BoxLevel class.

	
class earwax.mapping.box_level.BoxLevel(game: Game, boxes: List[earwax.mapping.box.Box[typing.Any][Any]] = NOTHING, coordinates: earwax.point.Point = NOTHING, bearing: int = 0, current_box: Optional[earwax.mapping.box_level.CurrentBox] = None)

	Bases: earwax.level.Level

A level that deals with sound generation for boxes.

This level can be used in your games. Simply bind the various action
methods (listed below) to whatever triggers suit your purposes.

Some of the attributes of this class refer to a “perspective”. This could
theoretically be anything you want, but most likely refers to the player.
Possible exceptions include if you made an instance to represent some kind
of long range vision for the player.

Action-ready Methods

	move().

	show_coordinates()

	show_facing()

	turn()

	show_nearest_door()

	describe_current_box()

	Variables

	
	box – The box that this level will work with.

	coordinates – The coordinates of the perspective.

	bearing – The direction the perspective is facing.

	current_box – The most recently walked over box.

If you don’t set this attribute when creating the instance, then the
first time the player moves using the move()
method, the name of the box they are standing on will be spoken.

	reverb – An optional reverb to play sounds through.

You shouldn’t write to this property, instead use the
connect_reverb() method to set a new reverb, and
disconnect_reverb() to clear.

	
activate(door_distance: float = 2.0) → Callable[[], None]

	Return a function that can be call when the enter key is pressed.

First we check if the current box is a portal. If it is, then we call
handle_portal().

If it is not, we check to see if there is a door close enough to be
opened or closed. If there is, then we call
handle_door() on it.

If none of this works, and there is a current box, dispatch the
on_activate() event to let the box do its own thing.

	Parameters

	door_distance – How close doors have to be for this method to
open or close them.

	
add_box(box: earwax.mapping.box.Box[typing.Any][Any]) → None

	Add a box to self.boxes.

	Parameters

	box – The box to add.

	
add_boxes(boxes: Iterable[earwax.mapping.box.Box]) → None

	Add multiple boxes with one call.

	Parameters

	boxes – An iterable for boxes to add.

	
add_default_actions() → None

	Add some default actions.

This method adds the following actions:

	Move forward: W

	Turn 180 degrees: S

	Turn 45 degrees left: A

	Turn 45 degrees right: D

	Show coordinates: C

	Show the facing direction: F

	Describe current box: X

	Speak nearest door: Z

	Activate nearby objects: Return

	
calculate_coordinates(distance: float, bearing: int) → Tuple[float, float]

	Calculate coordinates at the given distance in the given direction.

Used by move() to calculate new coordinates.

Override this method if you want to change the algorithm used to
calculate the target coordinates.

Please bear in mind however, that the coordinates this method returns
should always be 2d.

	Parameters

	
	distance – The distance which should be used.

	bearing – The bearing the new coordinates are in.

This value may not be the same as self.bearing.

	
collide(box: earwax.mapping.box.Box[typing.Any][Any], coordinates: earwax.point.Point) → None

	Handle collitions.

Called to run collision code on a box.

	Parameters

	
	box – The box the player collided with.

	coordinates – The coordinates the player was trying to reach.

	
describe_current_box() → None

	Describe the current box.

	
get_angle_between(other: earwax.point.Point) → float

	Return the angle between the perspective and the other coordinates.

This function takes into account self.bearing.

	Parameters

	other – The target coordinates.

	
get_boxes(t: Any) → List[earwax.mapping.box.Box]

	Return a list of boxes of the current type.

If no boxes are found, an empty list is returned.

	Parameters

	t – The type of the boxes.

	
get_containing_box(coordinates: earwax.point.Point) → Optional[earwax.mapping.box.Box]

	Return the box that spans the given coordinates.

If no box is found, None will be returned.

This method scans self.boxes using the
sort_boxes() method.

	Parameters

	coordinates – The coordinates the box should span.

	
get_current_box() → Optional[earwax.mapping.box.Box]

	Get the box that lies at the current coordinates.

	
handle_box(box: earwax.mapping.box.Box[typing.Any][Any]) → None

	Handle a bulk standard box.

The coordinates have already been set, and the on_footstep event
dispatched, so all that is left is to speak the name of the new box, if
it is different to the last one, update self.reverb if necessary, and store the new box.

	
move(distance: float = 1.0, vertical: Optional[float] = None, bearing: Optional[int] = None) → Callable[[], None]

	Return a callable that allows the player to move on the map.

If the move is successful (I.E.: There is a box at the destination
coordinates), the on_move() event is dispatched.

If not, then on_move_fail() is dispatched.

	Parameters

	
	distance – The distance to move.

	vertical – An optional adjustment to be added to the vertical
position.

	bearing – An optional direction to move in.

If this value is None, then self.bearing will be used.

	
nearest_by_type(start: earwax.point.Point, data_type: Any, same_z: bool = True) → Optional[earwax.mapping.box_level.NearestBox]

	Get the nearest box to the given point by type.

If no boxes of the given type are found, None will be returned.

	Parameters

	
	start – The point to start looking from.

	data_type – The type of box data to
search for.

	same_z – If this value is True, only boxes on the same z axis
will be considered.

	
nearest_door(start: earwax.point.Point, same_z: bool = True) → Optional[earwax.mapping.box_level.NearestBox]

	Get the nearest door.

Iterates over all doors, and returned the nearest one.

	Parameters

	
	start – The coordinates to start from.

	same_z – If True, then doors on different levels will not be
considered.

	
nearest_portal(start: earwax.point.Point, same_z: bool = True) → Optional[earwax.mapping.box_level.NearestBox]

	Return the nearest portal.

	Parameters

	
	start – The coordinates to start from.

	same_z – If True, then portals on different levels will not
be considered.

	
on_move_fail(distance: float, vertical: Optional[float], bearing: int, coordinates: earwax.point.Point) → None

	Handle a move failure.

An event that will be dispatched when the
move() action has been used, but no move was
performed.

	Parameters

	
	distance – The distance value that was passed to move().

	vertical – The vertical value that was passed to move.

	bearing – The bearing argument that was passed to move,
or self.bearing.

	
on_move_success() → None

	Handle a successful move.

An event that will be dispatched when the
move() action is used.

By default, this method plays the correct footstep sound.

	
on_push() → None

	Set listener orientation, and start ambiances and tracks.

	
on_turn() → None

	Handle turning.

An event that will dispatched when the turn()
action is used.

	
register_box(box: earwax.mapping.box.Box) → None

	Register a box that is already in the boxes list.

	Parameters

	box – The box to register.

	
remove_box(box: earwax.mapping.box.Box[typing.Any][Any]) → None

	Remove a box from self.boxes.

	Parameters

	box – The box to remove.

	
set_bearing(angle: int) → None

	Set the direction of travel and the listener’s orientation.

	Parameters

	angle – The bearing (in degrees).

	
set_coordinates(p: earwax.point.Point) → None

	Set the current coordinates.

Also set listener position.

	Parameters

	p – The new point to assign to self.coordinates.

	
show_coordinates(include_z: bool = False) → Callable[[], None]

	Speak the current coordinates.

	
show_facing(include_angle: bool = True) → Callable[[], None]

	Return a function that will let you see the current bearing as text.

For example:

l = BoxLevel(...)
l.action('Show facing', symbol=key.F)(l.show_facing())

	Parameters

	include_angle – If True, then the actual angle will be shown
along with the direction name.

	
show_nearest_door(max_distance: Optional[float] = None) → Callable[[], None]

	Return a callable that will speak the position of the nearest door.

	Parameters

	max_distance – The maximum distance between the current
coordinates and the nearest door where the door will still be
reported.

If this value is None, then any door will be reported.

	
sort_boxes() → List[earwax.mapping.box.Box]

	Return children sorted by area.

	
turn(amount: int) → Callable[[], None]

	Return a turn function.

Return a function that will turn the perspective by the given amount
and dispatch the on_turn event.

For example:

l = BoxLevel(...)
l.action('Turn right', symbol=key.D)(l.turn(45))
l.action('Turn left', symbol=key.A)(l.turn(-45))

The resulting angle will always be in the range 0-359.

	Parameters

	amount – The amount to turn by.

Positive numbers turn clockwise, while negative numbers turn
anticlockwise.

	
walls_between(end: earwax.point.Point, start: Optional[earwax.point.Point] = None) → int

	Return the number of walls between two points.

	Parameters

	
	end – The target coordinates.

	start – The coordinates to start at.

If this value is None, then the current
coordinates will be used.

	
class earwax.mapping.box_level.CurrentBox(coordinates: earwax.point.Point, box: earwax.mapping.box.Box[typing.Any][Any])

	Bases: object

Store a reference to the current box.

This class stores the position too, so that caching can be performed.

	Variables

	
	coordinates – The coordinates that were last
checked.

	box – The last current box.

	
class earwax.mapping.box_level.NearestBox(box: earwax.mapping.box.Box, coordinates: earwax.point.Point, distance: float)

	Bases: object

A reference to the nearest box.

	Variables

	
	box – The box that was found.

	coordinates – The nearest coordinates to the ones
specified.

	distance – The distance between the supplied
coordinates, and coordinates.

earwax.mapping.door module

Provides the Door class.

	
class earwax.mapping.door.Door(open: bool = True, closed_sound: Optional[pathlib.Path] = None, open_sound: Optional[pathlib.Path] = None, close_sound: Optional[pathlib.Path] = None, close_after: Union[float, Tuple[float, float], None] = None, can_open: Optional[Callable[[], bool]] = None, can_close: Optional[Callable[[], bool]] = None)

	Bases: object

An object that can be added to a box to optionally block travel.

Doors can currently either be open or closed. When opened, they can
optionally close after a specified time:

Door() # Standard open door.
Door(open=False) # Closed door.
Door(close_after=5.0) # Will automatically close after 5 seconds.
A door that will automatically close between 5 and 10 seconds after
it has been opened:
Door(close_after=(5.0, 10.0)

	Variables

	
	open – Whether or not this box can be walked on.

If this value is False, then the player will hear
closed_sound when trying to walk on this box.

If this value is True, the player will be able to enter the box as
normal.

	closed_sound – The sound that will be heard if
open is False.

	open_sound – The sound that will be heard when opening
this door.

	close_sound – The sound that will be heard when closing
this door.

	close_after – When (if ever) to close the door after it
has been opened.

This attribute supports 3 possible values:

	None: The door will not close on its own.

	
	A tuple of two positive floats a and b: A random number

	between a and b will be selected, and the door will
automatically close after that time.

	A float: The exact time the door will automatically close after.

	can_open – An optional method which will be used to
decide whether or not this door can be opened at this time.

This method must return True or False, and must handle any
messages which should be sent to the player.

	can_close – An optional method which will be used to
decide whether or not this door can be closed at this time.

This method must return True or False, and must handle any
messages which should be sent to the player.

earwax.mapping.map_editor module

Provides the MapEditor class.

	
class earwax.mapping.map_editor.AnchorPoints

	Bases: enum.Enum

The corners of a box points can be anchored to.

	
bottom_back_left = 0

	

	
bottom_back_right = 4

	

	
bottom_front_left = 2

	

	
bottom_front_right = 3

	

	
top_back_left = 5

	

	
top_back_right = 7

	

	
top_front_left = 6

	

	
top_front_right = 1

	

	
class earwax.mapping.map_editor.BoxPoint(box_id: Optional[str] = None, corner: Optional[earwax.mapping.map_editor.AnchorPoints] = None, x: int = 0, y: int = 0, z: int = 0)

	Bases: earwax.mixins.DumpLoadMixin

Anchor a point to another box.

	
class earwax.mapping.map_editor.BoxTemplate(start: earwax.mapping.map_editor.BoxPoint = NOTHING, end: earwax.mapping.map_editor.BoxPoint = NOTHING, name: str = 'Untitled Box', surface_sound: Optional[str] = None, wall_sound: Optional[str] = None, type: earwax.mapping.box.BoxTypes = NOTHING, id: str = NOTHING, label: str = NOTHING)

	Bases: earwax.mixins.DumpLoadMixin

A template for creating a box.

Instances of this class will be dumped to the map file.

	
get_default_label() → str

	Get a unique ID.

	
exception earwax.mapping.map_editor.InvalidLabel

	Bases: Exception

An invalid ID or label was given.

	
class earwax.mapping.map_editor.LevelMap(box_templates: List[earwax.mapping.map_editor.BoxTemplate] = NOTHING, coordinates: earwax.mapping.map_editor.BoxPoint = NOTHING, bearing: int = 0, name: str = 'Untitled Map', notes: str = NOTHING)

	Bases: earwax.mixins.DumpLoadMixin

A representation of a earwax.BoxLevel instance.

	
class earwax.mapping.map_editor.MapEditor(game: Game, boxes: List[earwax.mapping.box.Box[typing.Any][Any]] = NOTHING, coordinates: earwax.point.Point = NOTHING, bearing: int = 0, current_box: Optional[earwax.mapping.box_level.CurrentBox] = None, filename: Optional[pathlib.Path] = None, context: earwax.mapping.map_editor.MapEditorContext = NOTHING)

	Bases: earwax.mapping.box_level.BoxLevel

A level which can be used for editing maps.

When this level talks about a map, it talks about a
earwax.mapping.map_editor.LevelMap instance.

	
box_menu(box: earwax.mapping.map_editor.MapEditorBox) → None

	Push a menu to configure the provided box.

	
box_sound(template: earwax.mapping.map_editor.BoxTemplate, name: str) → Callable[[], Generator[None, None, None]]

	Push an editor for setting the given sound.

	Parameters

	
	template – The template to modify.

	name – The name of the sound to modify.

	
box_sounds() → None

	Push a menu for configuring sounds.

	
boxes_menu() → None

	Push a menu to select a box to configure.

If there is only 1 box, it will not be shown.

	
complain_box() → None

	Complain about there being no box.

	
create_box() → None

	Create a box, then call box_menu().

	
get_default_context() → earwax.mapping.map_editor.MapEditorContext

	Return a suitable context.

	
id_box() → Generator[None, None, None]

	Change the ID for the current box.

	
label_box() → Generator[None, None, None]

	Rename the current box.

	
on_move_fail(distance: float, vertical: Optional[float], bearing: int, coordinates: earwax.point.Point) → None

	Tell the user their move failed.

	
point_menu(template: earwax.mapping.map_editor.BoxTemplate, point: earwax.mapping.map_editor.BoxPoint) → Callable[[], None]

	Push a menu for configuring individual points.

	
points_menu() → None

	Push a menu for moving the current box.

	
rename_box() → Generator[None, None, None]

	Rename the current box.

	
save() → None

	Save the map level.

	
class earwax.mapping.map_editor.MapEditorBox(game: Game, start: earwax.point.Point, end: earwax.point.Point, name: Optional[str] = None, surface_sound: Optional[pathlib.Path] = None, wall_sound: Optional[pathlib.Path] = None, type: earwax.mapping.box.BoxTypes = NOTHING, data: Optional[T] = None, stationary: bool = NOTHING, reverb: Optional[object] = NOTHING, box_level: Optional[BoxLevel] = None, id: str = NOTHING)

	Bases: earwax.mapping.box.Box

A box with an ID.

	
get_default_id() → str

	Raise an error if the id is not provided.

	
class earwax.mapping.map_editor.MapEditorContext(level: MapEditor, level_map: earwax.mapping.map_editor.LevelMap, template_ids: Dict[str, earwax.mapping.map_editor.BoxTemplate] = NOTHING, box_ids: Dict[str, earwax.mapping.box.Box[str][str]] = NOTHING)

	Bases: object

A context to hold map information.

This class acts as an interface between a
LevelMap instance, and a
MapEditor instance.

	
add_template(template: earwax.mapping.map_editor.BoxTemplate, box: Optional[earwax.mapping.map_editor.MapEditorBox] = None) → None

	Add a template to this context.

This method will add the given template to its
box_template_ids
dictionary.

	Parameters

	template – The template to add.

	
reload_template(template: earwax.mapping.map_editor.BoxTemplate) → None

	Reload the given template.

This method recreates the box associated with the given template.

	Parameters

	template – The template to reload.

	
to_box(template: earwax.mapping.map_editor.BoxTemplate) → earwax.mapping.map_editor.MapEditorBox

	Return a box from a template.

	Parameters

	template – The template to convert.

	
to_point(data: earwax.mapping.map_editor.BoxPoint) → earwax.point.Point

	Return a point from the given data.

	Parameters

	data – The BoxPoint to load the point from.

	
earwax.mapping.map_editor.iskeyword()

	x.__contains__(y) <==> y in x.

	
earwax.mapping.map_editor.valid_label(text: str) → None

	Ensure the given label or ID is valid.

If it could not be used as a Python identifier for any reason,
earwax.mapping.map_editor.InvalidLabel will be raised.

	Parameters

	text – The text to check.

earwax.mapping.portal module

Provides the Portal class.

	
class earwax.mapping.portal.Portal(level: BoxLevel, coordinates: earwax.point.Point, bearing: Optional[int] = None, enter_sound: Optional[pathlib.Path] = None, exit_sound: Optional[pathlib.Path] = None, can_use: Optional[Callable[[], bool]] = None)

	Bases: earwax.mixins.RegisterEventMixin

A portal to another map.

An object that can be added to a earwax.Box to make a link
between two maps.

This class implements pyglet.event.EventDispatcher, so events can be
registered and dispatched on it.

The currently-registered events are:

	on_enter()

	on_exit()

	Variables

	
	level – The destination level.

	coordinates – The exit coordinates.

	bearing – If this value is None, then it will be
used for the player’s bearing after this portal is used. Otherwise, the
bearing from the old level will be used.

	enter_sound – The sound that should play when entering
this portal.

This sound is probably only used when an NPC uses the portal.

	exit_sound – The sound that should play when exiting
this portal.

This is the sound that the player will hear when using the portal.

	can_use – An optional method which will be called to
ensure that this portal can be used at this time.

This function should return True or False, and should handle
any messages which should be sent to the player.

	
on_enter() → None

	Handle a player entering this portal.

	
on_exit() → None

	Handle a player exiting this portal.

earwax.menus package

Submodules

	earwax.menus.action_menu module

	earwax.menus.config_menu module

	earwax.menus.file_menu module

	earwax.menus.menu module

	earwax.menus.menu_item module

	earwax.menus.reverb_editor module

Module contents

Provides all menu-related classes.

By default:

	
	Menus are lists of items which can be traversed with the arrow keys, or by

	searching.

	The first item can be focussed with the home key.

	The last item can be focussed with the end key.

	The selected item can be activated with the enter key.

Optionally, menus can be dismissed with the escape key.

	
class earwax.menus.Menu(game: Game, title: Union[str, TitleFunction], dismissible: bool = True, item_select_sound_path: Optional[pathlib.Path] = None, item_activate_sound_path: Optional[pathlib.Path] = None, position: int = -1, search_timeout: float = 0.5, search_time: float = 0.0)

	Bases: earwax.level.Level, earwax.mixins.TitleMixin, earwax.mixins.DismissibleMixin

A menu of MenuItem instances.

Menus hold multiple menu items which can be activated using actions.

As menus are simply Level subclasses, they can be
pushed, popped, and replaced.

To add items to a menu, you can either use the item() decorator, or
the add_item() function.

Here is an example of both methods:

from earwax import Game, Level, Menu
from pyglet.window import key, Window
w = Window(caption='Test Game')
g = Game()
l = Level()
@l.action('Show menu', symbol=key.M)
def menu():
 '''Show a menu with 2 items.'''
 m = Menu(g, 'Menu')
 @m.item(title='First Item')
 def first_item():
 g.output('First menu item.')
 g.pop_level()
 def second_item():
 g.output('Second menu item.')
 g.pop_level()
 m.add_item(second_item, title='Second Item')
 g.push_level(m)

g.push_level(l)
g.run(w)

To override the default actions that are added to a menu, subclass
earwax.Menu, and override __attrs_post_init__().

	Variables

	
	item_sound_path – The default sound to play when moving
through the menu.

If the selected item’s sound_path attribute is
not None, then that value takes precedence.

	items – The list of MenuItem instances for this menu.

	position – The user’s position in this menu.

	search_timeout – The maximum time between menu searches.

	search_time – The time the last menu search was
performed.

	search_string – The current menu search search string.

	
activate() → Optional[Generator[None, None, None]]

	Activate the currently focused menu item.

Usually triggered by the enter key.

	
add_item(func: Callable[[], Optional[Generator[None, None, None]]], **kwargs) → earwax.menus.menu_item.MenuItem

	Add an item to this menu.

For example:

m = Menu(game, 'Example Menu')
def f():
 game.output('Menu item activated.')
m.add_item(f, title='Test Item')
m.add_item(f, sound_path=Path('sound.wav'))

If you would rather use decorators, use the item()
method instead.

	Parameters

	
	func – The function which will be called when the menu item is
selected.

	kwargs – Extra arguments to be passed to the constructor of
earwax.MenuItem.

	
add_submenu(menu: earwax.menus.menu.Menu, replace: bool, **kwargs) → earwax.menus.menu_item.MenuItem

	Add a submenu to this menu.

	Parameters

	
	menu – The menu to show when the resulting item is activated.

	replace – If True, then the new menu will replace this one in
the levels stack.

	kwargs – The additional arguments to pass to
add_item().

	
current_item

	Return the currently selected menu item.

If position is -1, return
None.

	
end() → None

	Move to the end of a menu.

Usually triggered by the end key.

	
classmethod from_credits(game: Game, credits: List[earwax.credit.Credit], title: str = 'Game Credits') → Menu

	Return a menu for showing credits.

	Parameters

	
	game – The game to use.

	credits – The credits to show.

	title – The title of the new menu.

	
home() → None

	Move to the start of a menu.

Usually triggered by the home key.

	
item(**kwargs) → Callable[[Callable[[], Optional[Generator[None, None, None]]]], earwax.menus.menu_item.MenuItem]

	Decorate a function to be used as a menu item.

For example:

@menu.item(title='Title')
def func():
 pass

@menu.item(sound_path=Path('sound.wav'))
def item_with_sound():
 pass

If you don’t want to use a decorator, you can use the
add_item() method instead.

	Parameters

	kwargs – Extra arguments to be passed to the constructor of
earwax.MenuItem.

	
make_sound(item: earwax.menus.menu_item.MenuItem, path: pathlib.Path) → earwax.sound.Sound

	Return a sound object.

	Parameters

	
	item – The menu item to make the sound for.

This value is probably current_item.

	path – The path to load the sound from.

This value will have been determined by
show_selection(), and may have been loaded from
the menu item itself, or the main earwax configuration.

	
move_down() → None

	Move down in this menu.

Usually triggered by the down arrow key.

	
move_up() → None

	Move up in this menu.

Usually triggered by the up arrow key.

	
on_pop() → None

	Destroy select_sound if necessary.

	
on_push() → None

	Handle this menu being pushed.

This method is called when this object has been pushed onto a
Game instance.

By default, show the current selection. That will be the same as
speaking the title, unless self.position
has been set to something other than -1..

	
on_reveal() → None

	Show selection again.

	
on_text(text: str) → None

	Handle sent text.

By default, performs a search of this menu.

	Parameters

	text – The text that has been sent.

	
show_selection() → None

	Speak the menu item at the current position.

If self.position is -1, this method
speaks self.title.

This function performs no error checking, so it will happily throw
errors if position is something stupid.

	
classmethod yes_no(game: Game, yes_action: Callable[[], Optional[Generator[None, None, None]]], no_action: Callable[[], Optional[Generator[None, None, None]]], title: str = 'Are you sure?', yes_label: str = 'Yes', no_label: str = 'No', **kwargs) → Menu

	Create and return a yes no menu.

	Parameters

	
	game – The game to bind the new menu to.

	yes_action – The function to be called if the yes item is
selected.

	no_action – The action to be performed if no is selected.

	title – The title of the menu.

	yes_label – The label of the yes item.

	no_label – The title of the no label.

	kwargs – Extra keyword arguments to be passed to the Menu
constructor.

	
class earwax.menus.MenuItem(func: Callable[[], Optional[Generator[None, None, None]]], title: Union[str, TitleFunction, None] = None, select_sound_path: Optional[pathlib.Path] = None, loop_select_sound: bool = False, activate_sound_path: Optional[pathlib.Path] = None)

	Bases: earwax.mixins.RegisterEventMixin

An item in a Menu.

This class is rarely used directly, instead
earwax.menu.Menu.add_item() or earwax.menu.Menu.item() can be
used to return an instance.

	Variables

	
	func – The function which will be called when this
item is activated.

	title – The title of this menu item.

If this value is a callable, it should return a string which will be
used as the title.

	select_sound_path – The path to a sound which should
play when this menu item is selected.

If this value is None (the default), then no sound will be heard
unless the containing menu has its
item_select_sound_path attribute set to something
that is not None, or
earwax.EarwaxConfig.menus.default_item_select_sound is not
None.

	activate_sound_path – The path to a sound which
should play when this menu item is activated.

If this value is None (the default), then no sound will be heard
unless the containing menu has its
item_activate_sound_path attribute set to
something that is not None, or
earwax.EarwaxConfig.menus.default_item_select_sound is not
None.

	
get_title() → Optional[str]

	Return the proper title of this object.

If self.title is a callable,
its return value will be returned.

	
on_selected() → None

	Handle this menu item being selected.

	
class earwax.menus.ActionMenu(game: Game, title: Union[str, TitleFunction], dismissible: bool = True, item_select_sound_path: Optional[pathlib.Path] = None, item_activate_sound_path: Optional[pathlib.Path] = None, position: int = -1, search_timeout: float = 0.5, search_time: float = 0.0, input_mode: Optional[earwax.input_modes.InputModes] = NOTHING, all_triggers_label: Optional[str] = '<< Show all triggers >>')

	Bases: earwax.menus.menu.Menu

A menu to show a list of actions and their associated triggers.

You can use this class with any game, like so:

from earwax import Game, Level, ActionMenu
from pyglet.window import Window, key
w = Window(caption='Test Game')
g = Game()
l = Level()
@l.action('Show actions', symbol=key.SLASH, modifiers=key.MOD_SHIFT)
def actions_menu():
 '''Show an actions menu.'''
 a = ActionMenu(g, 'Actions')
 g.push_level(a)

g.push_level(l)
g.run(w)

Now, if you press shift and slash (a question mark on english keyboards),
you will get an action menu.

This code can be shortened to:

@l.action('Show actions', symbol=key.SLASH, modifiers=key.MOD_SHIFT)
def actions_menu():
 '''Show an actions menu.'''
 game.push_action_menu()

If you want to override how triggers appear in the menu, then you can
override symbol_to_string() and
mouse_to_string().

	Variables

	
	input_mode – The input mode this menu will show
actions for.

	all_triggers_label – The label for the “All
triggers” entry.

If this value is None no such entry will be shown.

	
action_menu(action: earwax.action.Action) → Callable[[], Optional[Generator[None, None, None]]]

	Show a submenu of triggers.

Override this method to change how the submenu for actions is
displayed.

	Parameters

	action – The action to generate the menu for.

	
action_title(action: earwax.action.Action, triggers: List[str]) → str

	Return a suitable title for the given action.

This method is used when building the menu when
input_mode is not None.

	Parameters

	
	action – The action whose name will be used.

	triggers – A list of triggers gleaned from the given action.

	
get_default_input_mode() → earwax.input_modes.InputModes

	Get the default input mode.

	
handle_action(action: earwax.action.Action) → Callable[[], Optional[Generator[None, None, None]]]

	Handle an action.

This method is used as the menu handler that is triggered when you
select a trigger to activate the current action.

	Parameters

	action – The action to run.

	
hat_direction_to_string(direction: Tuple[int, int]) → str

	Return the given hat direction as a string.

	
mouse_to_string(action: earwax.action.Action) → str

	Describe how to trigger the given action with the mouse.

Returns a string representing the mouse button and modifiers needed
to trigger the provided action.

You must be certain that action.mouse_button is not None.

Override this method to change how mouse triggers appear.

	Parameters

	action – The action whose mouse_button
attribute this method will be working on.

	
show_all() → None

	Show all triggers.

	
symbol_to_string(action: earwax.action.Action) → str

	Describe how to trigger the given action with the keyboard.

Returns a string representing the symbol and modifiers needed to
trigger the provided action.

You must be certain that action.symbol is not None.

Override this method to change how symbol triggers appear.

	Parameters

	action – The action whose symbol attribute
this method will be working on.

	
class earwax.menus.FileMenu(game: Game, title: Union[str, TitleFunction], dismissible: bool = True, item_select_sound_path: Optional[pathlib.Path] = None, item_activate_sound_path: Optional[pathlib.Path] = None, position: int = -1, search_timeout: float = 0.5, search_time: float = 0.0, path: pathlib.Path = NOTHING, func: Callable[[Optional[pathlib.Path]], Optional[Generator[None, None, None]]] = <built-in function print>, root: Optional[pathlib.Path] = None, empty_label: Optional[str] = None, directory_label: Optional[str] = None, show_directories: bool = True, show_files: bool = True, up_label: str = '..')

	Bases: earwax.menus.menu.Menu

A menu for selecting a file.

File menus can be used as follows:

from pathlib import Path
from earwax import Game, Level, FileMenu, tts
from pyglet.window import key, Window
w = Window(caption='Test Game')
g = Game()
l = Level(g)
@l.action('Show file menu', symbol=key.F)
def file_menu():
 '''Show a file menu.'''
 def inner(p):
 tts.speak(str(p))
 g.pop_level()
 f = FileMenu(g, 'File Menu', Path.cwd(), inner)
 g.push_level(f)

g.push_level(l)
g.run(w)

	Variables

	
	path – The path this menu will start at.

	func – The function to run with the resulting
file or directory.

	root – The root directory which this menu will be
chrooted to.

	empty_label – The label given to an entry which
will allow this menu to return None as a result.

If this label is None (the default), then then no such option will be
available.

	directory_label – The label given to an entry
which will allow a directory - in addition to files - to be selected.

If this argument is None (the default), then no such option will be
available.

If you only want directories to be selected, then pass show_files=False
to the constructor.

	show_directories – Whether or not to show
directories in the list.

	show_files – Whether or not to include files in
the list.

	up_label – The label given to the entry to go up
in the directory tree.

	
navigate_to(path: pathlib.Path) → Callable[[], None]

	Navigate to a different path.

Instead of completely replacing the menu, just change the path, and re-
use this instance.

	
rebuild_menu() → None

	Rebuild the menu.

This method will be called once after initialisation, and every time
the directory is changed by the navigate_to()
method.

	
select_item(path: Optional[pathlib.Path]) → Callable[[], Optional[Generator[None, None, None]]]

	Select an item.

Used as the menu handler in place of a lambda.

	Parameters

	path – The path that has been selected. Could be a file or a
directory.

	
class earwax.menus.ConfigMenu(game: Game, title: Union[str, TitleFunction], dismissible: bool = True, item_select_sound_path: Optional[pathlib.Path] = None, item_activate_sound_path: Optional[pathlib.Path] = None, position: int = -1, search_timeout: float = 0.5, search_time: float = 0.0, config: earwax.config.Config = NOTHING)

	Bases: earwax.menus.menu.Menu

A menu that allows the user to set values on configuration sections.

If an option is present with a type the menu doesn’t know how to handle,
earwax.UnknownTypeError will be raised.

	Variables

	
	config – The configuration section this menu will
configure.

	type_handlers – Functions to handle the types this
menu knows about.

New types can be handled with the
type_handler() method.

	
activate_handler(handler: earwax.menus.config_menu.TypeHandler, option: earwax.config.ConfigValue) → Callable[[], Optional[Generator[None, None, None]]]

	Activates the given handler with the given configuration value.

Used by the option_menu() method when building
menus.

	Parameters

	
	handler – The TypeHandler instance that should
be activated.

	option – The ConfigValue
instance the handler should work with.

	
clear_value(option: earwax.config.ConfigValue) → None

	Clear the value.

Sets option.value to None.

Used by the default TypeHandler that
handles nullable values.

	Parameters

	option – The ConfigValue instance whose value
should be set to None.

	
earwax_config() → earwax.config.Config

	Return the main earwax configuration.

	
get_option_name(option: earwax.config.ConfigValue, name: str) → str

	Get the name for the given option.

The provided name argument will be the attribute name, so should
only be used if the option has no __section_name__ attribute.

	Parameters

	
	option – The ConfigValue instance whose name
should be returned.

	name – The name of the attribute that holds the option.

	
get_subsection_name(subsection: earwax.config.Config, name: str) → str

	Get the name for the given subsection.

The provided name argument will be the attribute name, so should
only be used if the subsection has no __section_name__
attribute.

	Parameters

	
	subsection – The Config instance whose name
should be returned.

	name – The name of the attribute that holds the subsection.

	
handle_bool(option: earwax.config.ConfigValue) → None

	Toggle a boolean value.

Used by the default TypeHandler that
handles boolean values.

	Parameters

	option – The ConfigValue instance to work on.

	
handle_float(option: earwax.config.ConfigValue) → Generator[None, None, None]

	Allow editing floats.

Used by the default TypeHandler that
handles float values.

	Parameters

	option – The ConfigValue instance to work on.

	
handle_int(option: earwax.config.ConfigValue) → Generator[None, None, None]

	Allow editing integers.

Used by the default TypeHandler that
handles integer values.

	Parameters

	option – The ConfigValue instance to work on.

	
handle_path(option: earwax.config.ConfigValue) → Generator[None, None, None]

	Allow selecting files and folders.

Used by the default TypeHandler that
handles pathlib.Path values.

	Parameters

	option – The ConfigValue instance to work on.

	
handle_string(option: earwax.config.ConfigValue) → Generator[None, None, None]

	Allow editing strings.

Used by the default TypeHandler that
handles string values.

	Parameters

	option – The ConfigValue instance to work on.

	
option_menu(option: earwax.config.ConfigValue, name: str) → Callable[[], Generator[None, None, None]]

	Add a menu for the given option.

If the type of the provided option is a Union type (like
Optional[str]), then an entry for editing each type will be added
to the menu. Otherwise, there will be only one entry.

The only special case is when the type is a tuple of values. If this
happens, the menu will instead be populated with a list of entries
corrisponding to the values of the tuple.

At the end of the menu, there will be an option to restore the default
value.

	Parameters

	
	option – The ConfigValue instance to generate a
menu for.

	name – The proper name of the given option, as returned by
get_option_name().

	
set_value(option: earwax.config.ConfigValue, value: Any, message: str = 'Done.') → Callable[[], None]

	Set a value.

Returns a callable that can be used to set the value of the provided
option to the provided value.

This method returns a callable because it is used extensively by
option_menu(), and a bunch of lambdas becomes
less readable. Plus, Mypy complains about them.

	Parameters

	
	option – The ConfigValue instance to work on.

	value – The value to set option.value to.

	message – The message to be spoken after setting the value.

	
subsection_menu(subsection: earwax.config.Config, name: str) → Callable[[], Generator[None, None, None]]

	Add a menu for the given subsection.

By default, creates a new earwax.ConfigMenu instance, and
returns a function that - when called - will push it onto the stack.

	Parameters

	
	subsection – The Config instance to create a
menu for.

	name – The proper name of the subsection, returned by
get_subsection_name().

	
type_handler(type_: object, title: Callable[[earwax.config.ConfigValue, str], str]) → Callable[[Callable[[earwax.config.ConfigValue], Optional[Generator[None, None, None]]]], Callable[[earwax.config.ConfigValue], Optional[Generator[None, None, None]]]]

	Add a type handler.

Decorate a function to be used as a type handler:

from datetime import datetime, timedelta
from earwax import ConfigMenu, tts

m = ConfigMenu(pretend_config, 'Options', game)

@m.type_handler(datetime, lambda option, name: 'Add a week')
def add_week(option):
 '''Add a week to the current value.'''
 option.value += timedelta(days=7)
 self.game.output('Added a week.')
 m.game.pop_level()

Handlers can do anything menu item functions can do, including creating
more menus, and yielding.

	Parameters

	
	type – The type this handler should be registered for.

	title – A function which will return the title for the menu item
for this handler.

	
class earwax.menus.TypeHandler(title: Callable[[earwax.config.ConfigValue, str], str], func: Callable[[earwax.config.ConfigValue], Optional[Generator[None, None, None]]])

	Bases: object

A type handler for use with ConfigMenu instances.

	Variables

	
	title – A function that will
return a string which can be used as the title for the menu item
generated by this handler.

	func – The function that will be
called when this handler is required.

	
exception earwax.menus.UnknownTypeError

	Bases: Exception

An unknown type was encountered.

An exception which will be thrown if a ConfigMenu
instance doesn’t know how to handle the given type.

	
class earwax.menus.ReverbEditor(game: Game, title: Union[str, TitleFunction], dismissible: bool = True, item_select_sound_path: Optional[pathlib.Path] = None, item_activate_sound_path: Optional[pathlib.Path] = None, position: int = -1, search_timeout: float = 0.5, search_time: float = 0.0, reverb: object = NOTHING, settings: earwax.reverb.Reverb = NOTHING, setting_items: List[earwax.menus.menu_item.MenuItem] = NOTHING)

	Bases: earwax.menus.menu.Menu

A menu for editing reverbs.

	
adjust_value(amount: earwax.menus.reverb_editor.ValueAdjustments) → Callable[[], None]

	Restore the current menu item to the default.

	
edit_value(setting: earwax.menus.reverb_editor.ReverbSetting, value: float) → Callable[[], Generator[None, None, None]]

	Edit the given value.

	
get_default_reverb() → object

	Raise an error.

	
get_default_settings() → earwax.reverb.Reverb

	Raise an error.

	
reset() → None

	Reload this menu.

	
set_value(setting: earwax.menus.reverb_editor.ReverbSetting, value: float) → None

	Set the value.

earwax.menus.action_menu module

Provides the ActionMenu class.

	
class earwax.menus.action_menu.ActionMenu(game: Game, title: Union[str, TitleFunction], dismissible: bool = True, item_select_sound_path: Optional[pathlib.Path] = None, item_activate_sound_path: Optional[pathlib.Path] = None, position: int = -1, search_timeout: float = 0.5, search_time: float = 0.0, input_mode: Optional[earwax.input_modes.InputModes] = NOTHING, all_triggers_label: Optional[str] = '<< Show all triggers >>')

	Bases: earwax.menus.menu.Menu

A menu to show a list of actions and their associated triggers.

You can use this class with any game, like so:

from earwax import Game, Level, ActionMenu
from pyglet.window import Window, key
w = Window(caption='Test Game')
g = Game()
l = Level()
@l.action('Show actions', symbol=key.SLASH, modifiers=key.MOD_SHIFT)
def actions_menu():
 '''Show an actions menu.'''
 a = ActionMenu(g, 'Actions')
 g.push_level(a)

g.push_level(l)
g.run(w)

Now, if you press shift and slash (a question mark on english keyboards),
you will get an action menu.

This code can be shortened to:

@l.action('Show actions', symbol=key.SLASH, modifiers=key.MOD_SHIFT)
def actions_menu():
 '''Show an actions menu.'''
 game.push_action_menu()

If you want to override how triggers appear in the menu, then you can
override symbol_to_string() and
mouse_to_string().

	Variables

	
	input_mode – The input mode this menu will show
actions for.

	all_triggers_label – The label for the “All
triggers” entry.

If this value is None no such entry will be shown.

	
action_menu(action: earwax.action.Action) → Callable[[], Optional[Generator[None, None, None]]]

	Show a submenu of triggers.

Override this method to change how the submenu for actions is
displayed.

	Parameters

	action – The action to generate the menu for.

	
action_title(action: earwax.action.Action, triggers: List[str]) → str

	Return a suitable title for the given action.

This method is used when building the menu when
input_mode is not None.

	Parameters

	
	action – The action whose name will be used.

	triggers – A list of triggers gleaned from the given action.

	
get_default_input_mode() → earwax.input_modes.InputModes

	Get the default input mode.

	
handle_action(action: earwax.action.Action) → Callable[[], Optional[Generator[None, None, None]]]

	Handle an action.

This method is used as the menu handler that is triggered when you
select a trigger to activate the current action.

	Parameters

	action – The action to run.

	
hat_direction_to_string(direction: Tuple[int, int]) → str

	Return the given hat direction as a string.

	
mouse_to_string(action: earwax.action.Action) → str

	Describe how to trigger the given action with the mouse.

Returns a string representing the mouse button and modifiers needed
to trigger the provided action.

You must be certain that action.mouse_button is not None.

Override this method to change how mouse triggers appear.

	Parameters

	action – The action whose mouse_button
attribute this method will be working on.

	
show_all() → None

	Show all triggers.

	
symbol_to_string(action: earwax.action.Action) → str

	Describe how to trigger the given action with the keyboard.

Returns a string representing the symbol and modifiers needed to
trigger the provided action.

You must be certain that action.symbol is not None.

Override this method to change how symbol triggers appear.

	Parameters

	action – The action whose symbol attribute
this method will be working on.

earwax.menus.config_menu module

Provides the ConfigMenu class,.

	
class earwax.menus.config_menu.ConfigMenu(game: Game, title: Union[str, TitleFunction], dismissible: bool = True, item_select_sound_path: Optional[pathlib.Path] = None, item_activate_sound_path: Optional[pathlib.Path] = None, position: int = -1, search_timeout: float = 0.5, search_time: float = 0.0, config: earwax.config.Config = NOTHING)

	Bases: earwax.menus.menu.Menu

A menu that allows the user to set values on configuration sections.

If an option is present with a type the menu doesn’t know how to handle,
earwax.UnknownTypeError will be raised.

	Variables

	
	config – The configuration section this menu will
configure.

	type_handlers – Functions to handle the types this
menu knows about.

New types can be handled with the
type_handler() method.

	
activate_handler(handler: earwax.menus.config_menu.TypeHandler, option: earwax.config.ConfigValue) → Callable[[], Optional[Generator[None, None, None]]]

	Activates the given handler with the given configuration value.

Used by the option_menu() method when building
menus.

	Parameters

	
	handler – The TypeHandler instance that should
be activated.

	option – The ConfigValue
instance the handler should work with.

	
clear_value(option: earwax.config.ConfigValue) → None

	Clear the value.

Sets option.value to None.

Used by the default TypeHandler that
handles nullable values.

	Parameters

	option – The ConfigValue instance whose value
should be set to None.

	
earwax_config() → earwax.config.Config

	Return the main earwax configuration.

	
get_option_name(option: earwax.config.ConfigValue, name: str) → str

	Get the name for the given option.

The provided name argument will be the attribute name, so should
only be used if the option has no __section_name__ attribute.

	Parameters

	
	option – The ConfigValue instance whose name
should be returned.

	name – The name of the attribute that holds the option.

	
get_subsection_name(subsection: earwax.config.Config, name: str) → str

	Get the name for the given subsection.

The provided name argument will be the attribute name, so should
only be used if the subsection has no __section_name__
attribute.

	Parameters

	
	subsection – The Config instance whose name
should be returned.

	name – The name of the attribute that holds the subsection.

	
handle_bool(option: earwax.config.ConfigValue) → None

	Toggle a boolean value.

Used by the default TypeHandler that
handles boolean values.

	Parameters

	option – The ConfigValue instance to work on.

	
handle_float(option: earwax.config.ConfigValue) → Generator[None, None, None]

	Allow editing floats.

Used by the default TypeHandler that
handles float values.

	Parameters

	option – The ConfigValue instance to work on.

	
handle_int(option: earwax.config.ConfigValue) → Generator[None, None, None]

	Allow editing integers.

Used by the default TypeHandler that
handles integer values.

	Parameters

	option – The ConfigValue instance to work on.

	
handle_path(option: earwax.config.ConfigValue) → Generator[None, None, None]

	Allow selecting files and folders.

Used by the default TypeHandler that
handles pathlib.Path values.

	Parameters

	option – The ConfigValue instance to work on.

	
handle_string(option: earwax.config.ConfigValue) → Generator[None, None, None]

	Allow editing strings.

Used by the default TypeHandler that
handles string values.

	Parameters

	option – The ConfigValue instance to work on.

	
option_menu(option: earwax.config.ConfigValue, name: str) → Callable[[], Generator[None, None, None]]

	Add a menu for the given option.

If the type of the provided option is a Union type (like
Optional[str]), then an entry for editing each type will be added
to the menu. Otherwise, there will be only one entry.

The only special case is when the type is a tuple of values. If this
happens, the menu will instead be populated with a list of entries
corrisponding to the values of the tuple.

At the end of the menu, there will be an option to restore the default
value.

	Parameters

	
	option – The ConfigValue instance to generate a
menu for.

	name – The proper name of the given option, as returned by
get_option_name().

	
set_value(option: earwax.config.ConfigValue, value: Any, message: str = 'Done.') → Callable[[], None]

	Set a value.

Returns a callable that can be used to set the value of the provided
option to the provided value.

This method returns a callable because it is used extensively by
option_menu(), and a bunch of lambdas becomes
less readable. Plus, Mypy complains about them.

	Parameters

	
	option – The ConfigValue instance to work on.

	value – The value to set option.value to.

	message – The message to be spoken after setting the value.

	
subsection_menu(subsection: earwax.config.Config, name: str) → Callable[[], Generator[None, None, None]]

	Add a menu for the given subsection.

By default, creates a new earwax.ConfigMenu instance, and
returns a function that - when called - will push it onto the stack.

	Parameters

	
	subsection – The Config instance to create a
menu for.

	name – The proper name of the subsection, returned by
get_subsection_name().

	
type_handler(type_: object, title: Callable[[earwax.config.ConfigValue, str], str]) → Callable[[Callable[[earwax.config.ConfigValue], Optional[Generator[None, None, None]]]], Callable[[earwax.config.ConfigValue], Optional[Generator[None, None, None]]]]

	Add a type handler.

Decorate a function to be used as a type handler:

from datetime import datetime, timedelta
from earwax import ConfigMenu, tts

m = ConfigMenu(pretend_config, 'Options', game)

@m.type_handler(datetime, lambda option, name: 'Add a week')
def add_week(option):
 '''Add a week to the current value.'''
 option.value += timedelta(days=7)
 self.game.output('Added a week.')
 m.game.pop_level()

Handlers can do anything menu item functions can do, including creating
more menus, and yielding.

	Parameters

	
	type – The type this handler should be registered for.

	title – A function which will return the title for the menu item
for this handler.

	
class earwax.menus.config_menu.TypeHandler(title: Callable[[earwax.config.ConfigValue, str], str], func: Callable[[earwax.config.ConfigValue], Optional[Generator[None, None, None]]])

	Bases: object

A type handler for use with ConfigMenu instances.

	Variables

	
	title – A function that will
return a string which can be used as the title for the menu item
generated by this handler.

	func – The function that will be
called when this handler is required.

	
exception earwax.menus.config_menu.UnknownTypeError

	Bases: Exception

An unknown type was encountered.

An exception which will be thrown if a ConfigMenu
instance doesn’t know how to handle the given type.

earwax.menus.file_menu module

Provides the FileMenu class.

	
class earwax.menus.file_menu.FileMenu(game: Game, title: Union[str, TitleFunction], dismissible: bool = True, item_select_sound_path: Optional[pathlib.Path] = None, item_activate_sound_path: Optional[pathlib.Path] = None, position: int = -1, search_timeout: float = 0.5, search_time: float = 0.0, path: pathlib.Path = NOTHING, func: Callable[[Optional[pathlib.Path]], Optional[Generator[None, None, None]]] = <built-in function print>, root: Optional[pathlib.Path] = None, empty_label: Optional[str] = None, directory_label: Optional[str] = None, show_directories: bool = True, show_files: bool = True, up_label: str = '..')

	Bases: earwax.menus.menu.Menu

A menu for selecting a file.

File menus can be used as follows:

from pathlib import Path
from earwax import Game, Level, FileMenu, tts
from pyglet.window import key, Window
w = Window(caption='Test Game')
g = Game()
l = Level(g)
@l.action('Show file menu', symbol=key.F)
def file_menu():
 '''Show a file menu.'''
 def inner(p):
 tts.speak(str(p))
 g.pop_level()
 f = FileMenu(g, 'File Menu', Path.cwd(), inner)
 g.push_level(f)

g.push_level(l)
g.run(w)

	Variables

	
	path – The path this menu will start at.

	func – The function to run with the resulting
file or directory.

	root – The root directory which this menu will be
chrooted to.

	empty_label – The label given to an entry which
will allow this menu to return None as a result.

If this label is None (the default), then then no such option will be
available.

	directory_label – The label given to an entry
which will allow a directory - in addition to files - to be selected.

If this argument is None (the default), then no such option will be
available.

If you only want directories to be selected, then pass show_files=False
to the constructor.

	show_directories – Whether or not to show
directories in the list.

	show_files – Whether or not to include files in
the list.

	up_label – The label given to the entry to go up
in the directory tree.

	
navigate_to(path: pathlib.Path) → Callable[[], None]

	Navigate to a different path.

Instead of completely replacing the menu, just change the path, and re-
use this instance.

	
rebuild_menu() → None

	Rebuild the menu.

This method will be called once after initialisation, and every time
the directory is changed by the navigate_to()
method.

	
select_item(path: Optional[pathlib.Path]) → Callable[[], Optional[Generator[None, None, None]]]

	Select an item.

Used as the menu handler in place of a lambda.

	Parameters

	path – The path that has been selected. Could be a file or a
directory.

earwax.menus.menu module

Provides the Menu class.

	
class earwax.menus.menu.Menu(game: Game, title: Union[str, TitleFunction], dismissible: bool = True, item_select_sound_path: Optional[pathlib.Path] = None, item_activate_sound_path: Optional[pathlib.Path] = None, position: int = -1, search_timeout: float = 0.5, search_time: float = 0.0)

	Bases: earwax.level.Level, earwax.mixins.TitleMixin, earwax.mixins.DismissibleMixin

A menu of MenuItem instances.

Menus hold multiple menu items which can be activated using actions.

As menus are simply Level subclasses, they can be
pushed, popped, and replaced.

To add items to a menu, you can either use the item() decorator, or
the add_item() function.

Here is an example of both methods:

from earwax import Game, Level, Menu
from pyglet.window import key, Window
w = Window(caption='Test Game')
g = Game()
l = Level()
@l.action('Show menu', symbol=key.M)
def menu():
 '''Show a menu with 2 items.'''
 m = Menu(g, 'Menu')
 @m.item(title='First Item')
 def first_item():
 g.output('First menu item.')
 g.pop_level()
 def second_item():
 g.output('Second menu item.')
 g.pop_level()
 m.add_item(second_item, title='Second Item')
 g.push_level(m)

g.push_level(l)
g.run(w)

To override the default actions that are added to a menu, subclass
earwax.Menu, and override __attrs_post_init__().

	Variables

	
	item_sound_path – The default sound to play when moving
through the menu.

If the selected item’s sound_path attribute is
not None, then that value takes precedence.

	items – The list of MenuItem instances for this menu.

	position – The user’s position in this menu.

	search_timeout – The maximum time between menu searches.

	search_time – The time the last menu search was
performed.

	search_string – The current menu search search string.

	
activate() → Optional[Generator[None, None, None]]

	Activate the currently focused menu item.

Usually triggered by the enter key.

	
add_item(func: Callable[[], Optional[Generator[None, None, None]]], **kwargs) → earwax.menus.menu_item.MenuItem

	Add an item to this menu.

For example:

m = Menu(game, 'Example Menu')
def f():
 game.output('Menu item activated.')
m.add_item(f, title='Test Item')
m.add_item(f, sound_path=Path('sound.wav'))

If you would rather use decorators, use the item()
method instead.

	Parameters

	
	func – The function which will be called when the menu item is
selected.

	kwargs – Extra arguments to be passed to the constructor of
earwax.MenuItem.

	
add_submenu(menu: earwax.menus.menu.Menu, replace: bool, **kwargs) → earwax.menus.menu_item.MenuItem

	Add a submenu to this menu.

	Parameters

	
	menu – The menu to show when the resulting item is activated.

	replace – If True, then the new menu will replace this one in
the levels stack.

	kwargs – The additional arguments to pass to
add_item().

	
current_item

	Return the currently selected menu item.

If position is -1, return
None.

	
end() → None

	Move to the end of a menu.

Usually triggered by the end key.

	
classmethod from_credits(game: Game, credits: List[earwax.credit.Credit], title: str = 'Game Credits') → Menu

	Return a menu for showing credits.

	Parameters

	
	game – The game to use.

	credits – The credits to show.

	title – The title of the new menu.

	
home() → None

	Move to the start of a menu.

Usually triggered by the home key.

	
item(**kwargs) → Callable[[Callable[[], Optional[Generator[None, None, None]]]], earwax.menus.menu_item.MenuItem]

	Decorate a function to be used as a menu item.

For example:

@menu.item(title='Title')
def func():
 pass

@menu.item(sound_path=Path('sound.wav'))
def item_with_sound():
 pass

If you don’t want to use a decorator, you can use the
add_item() method instead.

	Parameters

	kwargs – Extra arguments to be passed to the constructor of
earwax.MenuItem.

	
make_sound(item: earwax.menus.menu_item.MenuItem, path: pathlib.Path) → earwax.sound.Sound

	Return a sound object.

	Parameters

	
	item – The menu item to make the sound for.

This value is probably current_item.

	path – The path to load the sound from.

This value will have been determined by
show_selection(), and may have been loaded from
the menu item itself, or the main earwax configuration.

	
move_down() → None

	Move down in this menu.

Usually triggered by the down arrow key.

	
move_up() → None

	Move up in this menu.

Usually triggered by the up arrow key.

	
on_pop() → None

	Destroy select_sound if necessary.

	
on_push() → None

	Handle this menu being pushed.

This method is called when this object has been pushed onto a
Game instance.

By default, show the current selection. That will be the same as
speaking the title, unless self.position
has been set to something other than -1..

	
on_reveal() → None

	Show selection again.

	
on_text(text: str) → None

	Handle sent text.

By default, performs a search of this menu.

	Parameters

	text – The text that has been sent.

	
show_selection() → None

	Speak the menu item at the current position.

If self.position is -1, this method
speaks self.title.

This function performs no error checking, so it will happily throw
errors if position is something stupid.

	
classmethod yes_no(game: Game, yes_action: Callable[[], Optional[Generator[None, None, None]]], no_action: Callable[[], Optional[Generator[None, None, None]]], title: str = 'Are you sure?', yes_label: str = 'Yes', no_label: str = 'No', **kwargs) → Menu

	Create and return a yes no menu.

	Parameters

	
	game – The game to bind the new menu to.

	yes_action – The function to be called if the yes item is
selected.

	no_action – The action to be performed if no is selected.

	title – The title of the menu.

	yes_label – The label of the yes item.

	no_label – The title of the no label.

	kwargs – Extra keyword arguments to be passed to the Menu
constructor.

earwax.menus.menu_item module

Provides the MenuItem class.

	
class earwax.menus.menu_item.MenuItem(func: Callable[[], Optional[Generator[None, None, None]]], title: Union[str, TitleFunction, None] = None, select_sound_path: Optional[pathlib.Path] = None, loop_select_sound: bool = False, activate_sound_path: Optional[pathlib.Path] = None)

	Bases: earwax.mixins.RegisterEventMixin

An item in a Menu.

This class is rarely used directly, instead
earwax.menu.Menu.add_item() or earwax.menu.Menu.item() can be
used to return an instance.

	Variables

	
	func – The function which will be called when this
item is activated.

	title – The title of this menu item.

If this value is a callable, it should return a string which will be
used as the title.

	select_sound_path – The path to a sound which should
play when this menu item is selected.

If this value is None (the default), then no sound will be heard
unless the containing menu has its
item_select_sound_path attribute set to something
that is not None, or
earwax.EarwaxConfig.menus.default_item_select_sound is not
None.

	activate_sound_path – The path to a sound which
should play when this menu item is activated.

If this value is None (the default), then no sound will be heard
unless the containing menu has its
item_activate_sound_path attribute set to
something that is not None, or
earwax.EarwaxConfig.menus.default_item_select_sound is not
None.

	
get_title() → Optional[str]

	Return the proper title of this object.

If self.title is a callable,
its return value will be returned.

	
on_selected() → None

	Handle this menu item being selected.

earwax.menus.reverb_editor module

Provides the ReverbEditor class.

	
class earwax.menus.reverb_editor.ReverbEditor(game: Game, title: Union[str, TitleFunction], dismissible: bool = True, item_select_sound_path: Optional[pathlib.Path] = None, item_activate_sound_path: Optional[pathlib.Path] = None, position: int = -1, search_timeout: float = 0.5, search_time: float = 0.0, reverb: object = NOTHING, settings: earwax.reverb.Reverb = NOTHING, setting_items: List[earwax.menus.menu_item.MenuItem] = NOTHING)

	Bases: earwax.menus.menu.Menu

A menu for editing reverbs.

	
adjust_value(amount: earwax.menus.reverb_editor.ValueAdjustments) → Callable[[], None]

	Restore the current menu item to the default.

	
edit_value(setting: earwax.menus.reverb_editor.ReverbSetting, value: float) → Callable[[], Generator[None, None, None]]

	Edit the given value.

	
get_default_reverb() → object

	Raise an error.

	
get_default_settings() → earwax.reverb.Reverb

	Raise an error.

	
reset() → None

	Reload this menu.

	
set_value(setting: earwax.menus.reverb_editor.ReverbSetting, value: float) → None

	Set the value.

	
class earwax.menus.reverb_editor.ReverbSetting(name: str, description: str, min: float, max: float, default: float, increment: float = 0.05)

	Bases: object

A setting for reverb.

	
class earwax.menus.reverb_editor.ValueAdjustments

	Bases: enum.Enum

Possible value adjustments for menu actions.

	
decrement = 1

	

	
default = 0

	

	
increment = 2

	

earwax.promises package

Submodules

	earwax.promises.base module

	earwax.promises.staggered_promise module

	earwax.promises.threaded_promise module

Module contents

Provides the various promise classes.

	
class earwax.promises.PromiseStates

	Bases: enum.Enum

The possible states of earwax.Promise instances.

	Variables

	
	not_ready – The promise has been created, but a
function must still be added.

How this is done depends on how the promise subclass in question has
been implemented, and may not always be used.

	ready – The promise has been created, and a
function registered. The run() method has
not yet been called.

	running – The promise’s
run() method has been called, but the
function has not yet returned a value, or raised an error.

	done – The promise has finished, and there was
no error. The on_done() and
on_finally() events have already been dispatched.

	error – The promise completed, but there was an
error, which was handled by the on_error() event.

The on_finally() event has been dispatched.

	cancelled – The promise has had its
cancel() method called, and its
on_cancel() event has been dispatched.

	
cancelled = 5

	

	
done = 3

	

	
error = 4

	

	
not_ready = 0

	

	
ready = 1

	

	
running = 2

	

	
class earwax.promises.ThreadedPromise(thread_pool: concurrent.futures._base.Executor, func: Optional[Callable[[...], T]] = None, future: Optional[concurrent.futures._base.Future] = None)

	Bases: earwax.promises.base.Promise

A promise that a value will be available in the future.

Uses an Executor subclass (like ThreadPoolExecutor, or
ProcessPoolExecutor for threading).

You can create this class directly, or by using decorators.

Here is an example of the decorator syntax:

from concurrent.futures import ThreadPoolExecutor

promise: ThreadedPromise = ThreadedPromise(ThreadPoolExecutor())

@promise.register_func
def func() -> None:
 # Long-running task...
 return 5

@promise.event
def on_done(value: int) -> None:
 # Do something with the return value.

@promise.event
def on_error(e: Exception) -> None:
 # Do something with an error.

@promise.event
def on_finally():
 print('Done.')

promise.run()

Or you could create the promise manually:

promise = ThreadedPromise(
 ThreadPoolExecutor(), func=predefined_function
)
promise.event('on_done')(print)
promise.run()

Note the use of Pyglet’s own event system.

	Variables

	
	thread_pool – The thread pool to use.

	func – The function to submit to the thread
pool.

	future – The future that is running, or None
if the run() method has not yet been
called.

	
cancel() → None

	Try to cancel self.future.

If There is no future, RuntimeError will be raised.

	
check(dt: float) → None

	Check state and react accordingly.

Checks to see if self.future
has finished or not.

If it has, dispatch the on_done() event
with the resulting value.

If an error has been raised, dispatch the
on_error() event with the resulting
error.

If either of these things have happened, dispatch the
on_finally() event.

	Parameters

	dt – The time since the last run.

This argument is required by pyglet.clock.schedule.

	
register_func(func: Callable[[...], T]) → Callable[[...], T]

	Register promise function.

Registers the function to be called by the
run() method.

	Parameters

	func – The function to use. Will be stored in self.func.

	
run(*args, **kwargs) → None

	Start this promise running.

The result of calling submit on self.thread_pool will be stored on
self.future.

If this instance does not have a function registered yet,
RuntimeError will be raised.

	Parameters

	
	args – The extra positional arguments to pass along to
submit.

	kwargs – The extra keyword arguments to pass along to submit.

	
class earwax.promises.StaggeredPromise(func: Callable[[...], Generator[float, None, T]])

	Bases: earwax.promises.base.Promise

A promise that can suspend itself at will.

I found myself missing the MOO-style suspend() function, so thought I’d
make the same capability available in earwax:

@StaggeredPromise.decorate
def promise() -> StaggeredPromiseGeneratorType:
 game.output('Hello.')
 yield 2.0
 game.output('World.')

promise.run()
game.run(window)

This class supports all the promise events found on
earwax.Promise, and also has a
on_next() event, which will fire whenever a
promise suspends:

@promise.event
def on_next(delay: float) -> None:
 print(f'I waited {delay}.')

	Variables

	
	func – The function to run.

	generator – The generator returned by
self.func.

	
cancel() → None

	Cancel this promise.

Cancels self.generator, and
sets the proper state.

	
classmethod decorate(func: Callable[[...], Generator[float, None, T]]) → earwax.promises.staggered_promise.StaggeredPromise

	Make an instance from a decorated function.

This function acts as a decorator method for returning
earwax.StaggeredPromise instances.

Using this function seems to help mypy figure out what type your
function is.

	Parameters

	func – The function to decorate.

	
do_next(dt: Optional[float]) → None

	Advance execution.

Calls next(self.generator), and then suspend for however long the
function demands.

If StopIteration is raised, then the args from that exception are
sent to the self.on_done event.

If any other exception is raised, then that exception is passed along
to the self.on_error event.

	Parameters

	dt – The time since the last run, as passed by
pyglet.clock.schedule_once.

If this is the first time this method is called, dt will be
None.

	
on_next(delay: float) → None

	Do something when execution is advanced.

This event is dispatched every time next is called on
self.func.

	Parameters

	delay – The delay that was requested by the function.

	
run(*args, **kwargs) → None

	Run this promise.

Start self.func running, and set
the proper state.

	Parameters

	
	args – The positional arguments passed to self.func.

	kwargs – The keyword arguments passed to self.func.

	
class earwax.promises.Promise

	Bases: typing.Generic, earwax.mixins.RegisterEventMixin

The base class for promises.

Instances of this class have a few possible states which are contained in
the PromiseStates enumeration.

	Variables

	state – The state this promise is in (see
above).

	
cancel() → None

	Override to provide cancel functionality.

	
done(value: T) → None

	Finish up.

Dispatches the on_done() event with the given
value, and set self.state to
earwax.PromiseStates.done.

	Parameters

	value – The value that was returned from whatever function this
promise had.

	
error(e: Exception) → None

	Handle an error.

This event dispatches the on_error() event with
the passed exception.

	Parameters

	e – The exception that was raised.

	
on_cancel() → None

	Handle cancellation.

This event is dispatched when this instance has its
cancel() method called.

	
on_done(result: T) → None

	Handle return value.

This event is dispatched when this promise completes with no error.

	Parameters

	result – The value returned by the function.

	
on_error(e: Exception) → None

	Handle an error.

This event is dispatched when this promise raises an error.

	Parameters

	e – The exception that was raised.

	
on_finally() → None

	Handle this promise comise completing.

This event is dispatched when this promise completes, whether or not it
raises an error.

	
run(*args, **kwargs) → None

	Start this promise running.

earwax.promises.base module

Provides the base Promise class, and the PromisesStates enumeration.

	
class earwax.promises.base.Promise

	Bases: typing.Generic, earwax.mixins.RegisterEventMixin

The base class for promises.

Instances of this class have a few possible states which are contained in
the PromiseStates enumeration.

	Variables

	state – The state this promise is in (see
above).

	
cancel() → None

	Override to provide cancel functionality.

	
done(value: T) → None

	Finish up.

Dispatches the on_done() event with the given
value, and set self.state to
earwax.PromiseStates.done.

	Parameters

	value – The value that was returned from whatever function this
promise had.

	
error(e: Exception) → None

	Handle an error.

This event dispatches the on_error() event with
the passed exception.

	Parameters

	e – The exception that was raised.

	
on_cancel() → None

	Handle cancellation.

This event is dispatched when this instance has its
cancel() method called.

	
on_done(result: T) → None

	Handle return value.

This event is dispatched when this promise completes with no error.

	Parameters

	result – The value returned by the function.

	
on_error(e: Exception) → None

	Handle an error.

This event is dispatched when this promise raises an error.

	Parameters

	e – The exception that was raised.

	
on_finally() → None

	Handle this promise comise completing.

This event is dispatched when this promise completes, whether or not it
raises an error.

	
run(*args, **kwargs) → None

	Start this promise running.

	
class earwax.promises.base.PromiseStates

	Bases: enum.Enum

The possible states of earwax.Promise instances.

	Variables

	
	not_ready – The promise has been created, but a
function must still be added.

How this is done depends on how the promise subclass in question has
been implemented, and may not always be used.

	ready – The promise has been created, and a
function registered. The run() method has
not yet been called.

	running – The promise’s
run() method has been called, but the
function has not yet returned a value, or raised an error.

	done – The promise has finished, and there was
no error. The on_done() and
on_finally() events have already been dispatched.

	error – The promise completed, but there was an
error, which was handled by the on_error() event.

The on_finally() event has been dispatched.

	cancelled – The promise has had its
cancel() method called, and its
on_cancel() event has been dispatched.

	
cancelled = 5

	

	
done = 3

	

	
error = 4

	

	
not_ready = 0

	

	
ready = 1

	

	
running = 2

	

earwax.promises.staggered_promise module

Provides the StaggeredPromise class.

	
class earwax.promises.staggered_promise.StaggeredPromise(func: Callable[[...], Generator[float, None, T]])

	Bases: earwax.promises.base.Promise

A promise that can suspend itself at will.

I found myself missing the MOO-style suspend() function, so thought I’d
make the same capability available in earwax:

@StaggeredPromise.decorate
def promise() -> StaggeredPromiseGeneratorType:
 game.output('Hello.')
 yield 2.0
 game.output('World.')

promise.run()
game.run(window)

This class supports all the promise events found on
earwax.Promise, and also has a
on_next() event, which will fire whenever a
promise suspends:

@promise.event
def on_next(delay: float) -> None:
 print(f'I waited {delay}.')

	Variables

	
	func – The function to run.

	generator – The generator returned by
self.func.

	
cancel() → None

	Cancel this promise.

Cancels self.generator, and
sets the proper state.

	
classmethod decorate(func: Callable[[...], Generator[float, None, T]]) → earwax.promises.staggered_promise.StaggeredPromise

	Make an instance from a decorated function.

This function acts as a decorator method for returning
earwax.StaggeredPromise instances.

Using this function seems to help mypy figure out what type your
function is.

	Parameters

	func – The function to decorate.

	
do_next(dt: Optional[float]) → None

	Advance execution.

Calls next(self.generator), and then suspend for however long the
function demands.

If StopIteration is raised, then the args from that exception are
sent to the self.on_done event.

If any other exception is raised, then that exception is passed along
to the self.on_error event.

	Parameters

	dt – The time since the last run, as passed by
pyglet.clock.schedule_once.

If this is the first time this method is called, dt will be
None.

	
on_next(delay: float) → None

	Do something when execution is advanced.

This event is dispatched every time next is called on
self.func.

	Parameters

	delay – The delay that was requested by the function.

	
run(*args, **kwargs) → None

	Run this promise.

Start self.func running, and set
the proper state.

	Parameters

	
	args – The positional arguments passed to self.func.

	kwargs – The keyword arguments passed to self.func.

earwax.promises.threaded_promise module

Provides the ThreadedPromise class.

	
class earwax.promises.threaded_promise.ThreadedPromise(thread_pool: concurrent.futures._base.Executor, func: Optional[Callable[[...], T]] = None, future: Optional[concurrent.futures._base.Future] = None)

	Bases: earwax.promises.base.Promise

A promise that a value will be available in the future.

Uses an Executor subclass (like ThreadPoolExecutor, or
ProcessPoolExecutor for threading).

You can create this class directly, or by using decorators.

Here is an example of the decorator syntax:

from concurrent.futures import ThreadPoolExecutor

promise: ThreadedPromise = ThreadedPromise(ThreadPoolExecutor())

@promise.register_func
def func() -> None:
 # Long-running task...
 return 5

@promise.event
def on_done(value: int) -> None:
 # Do something with the return value.

@promise.event
def on_error(e: Exception) -> None:
 # Do something with an error.

@promise.event
def on_finally():
 print('Done.')

promise.run()

Or you could create the promise manually:

promise = ThreadedPromise(
 ThreadPoolExecutor(), func=predefined_function
)
promise.event('on_done')(print)
promise.run()

Note the use of Pyglet’s own event system.

	Variables

	
	thread_pool – The thread pool to use.

	func – The function to submit to the thread
pool.

	future – The future that is running, or None
if the run() method has not yet been
called.

	
cancel() → None

	Try to cancel self.future.

If There is no future, RuntimeError will be raised.

	
check(dt: float) → None

	Check state and react accordingly.

Checks to see if self.future
has finished or not.

If it has, dispatch the on_done() event
with the resulting value.

If an error has been raised, dispatch the
on_error() event with the resulting
error.

If either of these things have happened, dispatch the
on_finally() event.

	Parameters

	dt – The time since the last run.

This argument is required by pyglet.clock.schedule.

	
register_func(func: Callable[[...], T]) → Callable[[...], T]

	Register promise function.

Registers the function to be called by the
run() method.

	Parameters

	func – The function to use. Will be stored in self.func.

	
run(*args, **kwargs) → None

	Start this promise running.

The result of calling submit on self.thread_pool will be stored on
self.future.

If this instance does not have a function registered yet,
RuntimeError will be raised.

	Parameters

	
	args – The extra positional arguments to pass along to
submit.

	kwargs – The extra keyword arguments to pass along to submit.

earwax.story package

Submodules

	earwax.story.context module

	earwax.story.edit_level module

	earwax.story.play_level module

	earwax.story.world module

Module contents

The story module.

Stories are a way of building worlds with no code at all.

They can do a fair amount on their own: You can create rooms, exits, objects,
and you can add basic actions to those objects. In addition, you can create
complex actions if you code them in yourself.

What you get out of the box:

	An easy way of creating worlds with an on screen editor.

	
	A main menu, with items for playing, exiting, showing credits, and loading

	saved games.

	Basic keyboard and controller commands for interracting with your world.

	
	The ability to create rich 3d environments, with all the sounds, messages,

	and music you can think of.

	
	The ability to build your world into a single Python file you can compile

	with a tool such as PyInstaller [https://www.pyinstaller.org/], or send
about as is.

If you do wish to extend your world, build it into a Python file, then edit it
to add extra actions, tasks, or whatever else you can think of.

	
class earwax.story.DumpablePoint(x: T, y: T, z: T)

	Bases: earwax.point.Point, earwax.mixins.DumpLoadMixin

A point that can be dumped and loaded.

	
class earwax.story.DumpableReverb(gain: float = 1.0, late_reflections_delay: float = 0.01, late_reflections_diffusion: float = 1.0, late_reflections_hf_reference: float = 500.0, late_reflections_hf_rolloff: float = 0.5, late_reflections_lf_reference: float = 200.0, late_reflections_lf_rolloff: float = 1.0, late_reflections_modulation_depth: float = 0.01, late_reflections_modulation_frequency: float = 0.5, mean_free_path: float = 0.02, t60: float = 1.0)

	Bases: earwax.reverb.Reverb, earwax.mixins.DumpLoadMixin

A reverb that can be dumped.

	
class earwax.story.RoomExit(destination_id: str, action: earwax.story.world.WorldAction = NOTHING, position: Optional[earwax.story.world.DumpablePoint] = None)

	Bases: earwax.mixins.DumpLoadMixin

An exit between two rooms.

Instances of this class rely on their action property to show
messages and play sounds, as well as for the name of the exit.

The actual destination can be retrieved with the destination
property.

	Variables

	
	destination_id – The ID of the room on the
other side of this exit.

	location – The location of this exit.

This value is provided by the containing
StoryWorld class.

	action – An action to perform when using this
exit.

	position – The position of this exit.

If this value is None, then any ambiances will not be
panned.

	
destination

	Return the room this exit leads from.

This value is inferred from destination_id.

	
class earwax.story.RoomObject(id: str = NOTHING, name: str = 'Unnamed Object', actions_action: Optional[earwax.story.world.WorldAction] = None, ambiances: List[earwax.story.world.WorldAmbiance] = NOTHING, actions: List[earwax.story.world.WorldAction] = NOTHING, position: Optional[earwax.story.world.DumpablePoint] = None, drop_action: Optional[earwax.story.world.WorldAction] = None, take_action: Optional[earwax.story.world.WorldAction] = None, use_action: Optional[earwax.story.world.WorldAction] = None, type: earwax.story.world.RoomObjectTypes = NOTHING, class_names: List[str] = NOTHING)

	Bases: earwax.story.world.StringMixin, earwax.mixins.DumpLoadMixin

An object in the story.

Instances of this class will either sit in a room, or be in the player’s
inventory.

	Variables

	
	id – The unique ID of this object. If this ID
is not provided, then picking it up will not be reliable, as the ID
will be randomly generated.

Other than the above restriction, you can set the ID to be whatever you
like.

	name – The name of this object.

This value will be used in any list of objects.

	actions_action – An action object which will
be used when viewing the actions menu for this object.

If this value is None, no music will play when viewing the actions
menu for this object, and the
actions_menu message will be shown.

	ambiances – A list of ambiances to play at
the position of this object.

	actions – A list of actions that can be
performed on this object.

	position – The position of this object.

If this value is None, then any ambiances will not be
panned.

	drop_action – The action that will be used
when this object is dropped by the player.

If this value is None, the containing world’s
drop_action attribute will be used.

	take_action – The action that will be used
when this object is taken by the player.

If this value is None, the containing world’s
take_action attribute will be used.

	use_action – The action that will be used
when this object is used by the player.

If this value is None, then this object is considered unusable.

	type – Specifies what sort of object this is.

	class_names – The names of all the classes
this object belongs to.

If you want a list of RoomObjectClass instances,
use the classes property.

	location – The room where this object is
located.

This value is set by the StoryWorld() which holds
this instance.

If this object is picked up, the location will not change, but this
object will be removed from the location’s
objects dictionary.

	
classes

	Return a list of classes.

This value is inferred from the
class_names list.

	
is_droppable

	Return True if this object can be dropped.

	
is_stuck

	Return True if this object is stuck.

	
is_takeable

	Return True if this object can be taken.

	
is_usable

	Return True if this object can be used.

	
class earwax.story.RoomObjectClass(name: str)

	Bases: earwax.mixins.DumpLoadMixin

Add a class for objects.

Instances of this class let you organise objects into classes.

This is used for making exits discriminate.

	Variables

	name – The name of the class.

	
class earwax.story.RoomObjectTypes

	Bases: enum.Enum

The type of a room object.

	Variables

	
	stuck – This object cannot be moved.

	takeable – This object can be picked up.

	droppable – This object can be dropped.

This value automatically implies
takeable.

	
droppable = 2

	

	
stuck = 0

	

	
takeable = 1

	

	
usable = 4

	

	
class earwax.story.StoryWorld(game: Game, name: str = 'Untitled World', author: str = 'Unknown', main_menu_musics: List[str] = NOTHING, cursor_sound: Optional[str] = None, empty_category_sound: Optional[str] = None, end_of_category_sound: Optional[str] = None, rooms: Dict[str, earwax.story.world.WorldRoom] = NOTHING, initial_room_id: Optional[str] = None, messages: earwax.story.world.WorldMessages = NOTHING, take_action: earwax.story.world.WorldAction = NOTHING, drop_action: earwax.story.world.WorldAction = NOTHING, panner_strategy: str = NOTHING, object_classes: List[earwax.story.world.RoomObjectClass] = NOTHING)

	Bases: earwax.mixins.DumpLoadMixin

The top level world object.

Worlds can contain rooms and messages, as well as various pieces of
information about themselves.

	Variables

	
	game – The game this world is part of.

	name – The name of this world.

	author – The author of this world.

The format of this value is arbitrary, although
Author Name <author@domain.com> is recommended.

	main_menu_musics – A list of filenames to
play as music while the main menu is being shown.

	cursor_sound – The sound that will play when
moving over objects.

If this value is None, no sound will be heard.

	empty_category_sound – The sound which will
be heard when cycling to an empty category.

	end_of_category_sound – The sound which will
be heard when cycling to the end of a category.

	rooms – A mapping of room IDs to rooms.

	initial_room_id – The ID of the room to be
used when first starting the game.

	messages – The messages object used by this
world.

	take_action – The default take action.

This value will be used when an object is taken with its
take_action attribute set to None.

	drop_action – The default drop action.

This value will be used when an object is dropped and has its
drop_action attribute is None.

	panner_strategy – The name of the default
panner strategy to use.

	object_classes – A list of object classes.

Objects are mapped to these classes by way of their
class_names and
classes lists.

	
add_room(room: earwax.story.world.WorldRoom, initial: Optional[bool] = None) → None

	Add a room to this world.

	Parameters

	
	room – The room to add.

	initial – An optional boolean to specify whether the given room
should become the
initial_room or not.

If this value is None, then this room will be set as default if
initial_room_id is itself
None.

	
all_objects() → Iterator[earwax.story.world.RoomObject]

	Return a generator of every object contained by this world.

	
dump() → Dict[str, Any]

	Dump this world.

	
initial_room

	Return the initial room for this world.

	
classmethod load(data: Dict[str, Any], *args) → Any

	Load credits before anything else.

	
class earwax.story.WorldAction(name: str = 'Unnamed Action', message: Optional[str] = None, sound: Optional[str] = None, rumble_value: float = 0.0, rumble_duration: int = 0)

	Bases: earwax.mixins.DumpLoadMixin

An action that can be performed.

Actions are used by the RoomObject and RoomExit classes.

If attached to a RoomObject instance, its
name will appear in the action menu. If attached to a RoomExit instance,
then its name will appear in the exits list.

	Variables

	
	name – The name of this action.

	message – The message that is shown to the
player when this action is used.

If this value is omitted, no message will be shown.

	sound – The sound that should play when this
action is used.

If this value is omitted, no sound will be heard.

	rumble_value – The power of a rumble
triggered by this action.

This value should be between 0.0 (nothing) and 1.0 (full power).

If this value is 0, no rumble will occur.

	rumble_duration – The time (in seconds) the
rumble should continue for.

If this value is 0, no rumble will occur.

	
class earwax.story.WorldAmbiance(path: str, volume_multiplier: float = 1.0)

	Bases: earwax.mixins.DumpLoadMixin

An ambiance.

This class represents a looping sound, which is either attached to a
WorldRoom instance, or a RoomObject instance.

	Variables

	
	path – The path to a sound file.

	volume_multiplier – A value to multiply
the ambiance volume by to get the volume for this sound..

	
class earwax.story.WorldMessages(no_objects: str = 'This room is empty.', no_actions: str = 'There is nothing you can do with this object.', no_exits: str = 'There is no way out of this room.', no_use: str = 'You cannot use {}.', nothing_to_use: str = 'You have nothing that can be used.', nothing_to_drop: str = 'You have nothing that can be dropped.', empty_inventory: str = "You aren't carrying anything.", room_activate: str = 'You cannot do that.', room_category: str = 'Location', objects_category: str = 'Objects', exits_category: str = 'Exits', actions_menu: str = 'You step up to {}.', inventory_menu: str = 'Inventory', main_menu: str = 'Main Menu', play_game: str = 'Start new game', load_game: str = 'Load game', show_credits: str = 'Show Credits', credits_menu: str = 'Credits', welcome: str = 'Welcome to this game.', no_saved_game: str = 'You have no game saved.', exit: str = 'Exit')

	Bases: earwax.mixins.DumpLoadMixin

All the messages that can be shown to the player.

When adding a message to this class, make sure to add the same message and
an appropriate description to the message_descriptions in
earwax/story/edit_level.py.

	Variables

	
	no_objects – The message which is shown
when the player cycles to an empty list of objects.

	no_actions – The message which is shown
when there are no actions for an object.

	no_exits – The message which is shown when
the player cycles to an empty list of exits.

	no_use – The message which is shown when
the player tries to use an object which cannot be used.

	nothing_to_use – The message which is
shown when accessing the use menu with no usable objects.

	nothing_to_drop – The message which is
shown when accessing the drop menu with no droppable items.

	empty_inventory – The message which is
shown when trying to access an empty inventory menu.

	room_activate – The message which is shown
when enter is pressed with the room category selected.

Maybe an action attribute should be added to rooms, so that enter can
be used everywhere?

	room_category – The name of the “room”
category.

	objects_category – The name of the
“objects” category.

	exits_category – The name of the “exits”
category.

	actions_menu – The message which is shown
when the actions menu is activated.

	inventory_menu – The title of the
inventory menu.

You can include the name of the object in question, by including a set
of braces:

<message id="actions_menu">You examine {}.</message>

	main_menu – The title of the main menu.

	play_game – The title of the “play game”
entry in the main menu.

	load_game – The title of the “load game”
entry in the main menu.

	show_credits – The title of the “show
credits” entry in the main menu.

	credits_menu – The title of the credits
menu.

	welcome – The message which is shown when
play starts.

	no_saved_game – The message which is
spoken when there is no game to load.

	exit – The title of the “exit” entry of
the main menu.

	
class earwax.story.WorldRoom(id: str = NOTHING, name: str = 'Unnamed Room', description: str = 'Not described.', ambiances: List[earwax.story.world.WorldAmbiance] = NOTHING, objects: Dict[str, earwax.story.world.RoomObject] = NOTHING, exits: List[earwax.story.world.RoomExit] = NOTHING, reverb: Optional[earwax.story.world.DumpableReverb] = None)

	Bases: earwax.mixins.DumpLoadMixin, earwax.story.world.StringMixin

A room in a world.

Rooms can contain exits and object.

It is worth noting that both the room name and description
can either be straight text, or they can consist of a hash character (#)
followed by the ID of another room, from which the relevant attribute will
be presented at runtime.

If this is the case, changing the name or description of the referenced
room will change the corresponding attribute on the first instance.

This convertion can only happen once, as otherwise there is a risk of
circular dependencies, causing a RecursionError to be raised.

	Variables

	
	world – The world this room is part of.

This value is set by the containing
StoryRoom instance.

	id – The unique ID of this room.

If this value is not provided, then an ID will be generated, based on
the number of rooms that have already been loaded.

If you want to link this room with exits, it is highly recommended
that you provide your own ID.

	name – The name of this room, or the #id of a
room to inherit the name from.

	description – The description of this room, or
the #id of another room to inherit the description from.

	ambiances – A list of ambiances to play when
this room is in focus.

	objects – A mapping of object ids to objects.

To get a list of objects, the canonical way is to use the
earwax.story.play_level.PlayLevel.get_objects() method, as this
will properly hide objects which are in the player’s inventory.

	exits – A list of exits from this room.

	
create_exit(destination: earwax.story.world.WorldRoom, **kwargs) → earwax.story.world.RoomExit

	Create and return an exit that links this room to another.

This method will add the new exits to this room’s
exits list, and set the appropriate
location on the new exit.

	Parameters

	
	destination – The destination whose ID will become the new exit’s
destination_id.

	kwargs – Extra keyword arguments to pass to the
RoomExit constructor..

	
create_object(**kwargs) → earwax.story.world.RoomObject

	Create and return an exit from the provided kwargs.

This method will add the created object to this room’s
objects dictionary, and set the
appropriate location attribute.

	Parameters

	kwargs – Keyword arguments to pass to the constructor of
RoomObject.

	
get_description() → str

	Return the actual description of this room.

	
get_name() → str

	Return the actual name of this room.

	
class earwax.story.WorldState(world: earwax.story.world.StoryWorld, room_id: str = NOTHING, inventory_ids: List[str] = NOTHING, category_index: int = NOTHING, object_index: Optional[int] = None)

	Bases: earwax.mixins.DumpLoadMixin

The state of a story.

With the exception of the world attribute, this class should only
have primitive types as its attributes, so that instances can be easily
dumped to yaml.

	Variables

	
	world – The world this state represents.

	room_id – The ID of the current room.

	inventory_ids – A list of object IDs which
make up the player’s inventory.

	category_index – The player’s position in the
list of categories.

	object_index – The player’s position in the
current category.

	
category

	Return the current category.

	
get_default_room_id() → str

	Get the first room ID from the attached world.

	Parameters

	instance – The instance to work on.

	
room

	Get the current room.

	
class earwax.story.WorldStateCategories

	Bases: enum.Enum

The various categories the player can select.

	Variables

	
	room – The category where the name
and description of a room are shown.

	objects – The category where the
objects of a room are shown.

	exits – The category where the
exits of a room are shown.

	
exits = 2

	

	
objects = 1

	

	
room = 0

	

	
class earwax.story.EditLevel(game: Game, world_context: StoryContext, cursor_sound: Optional[earwax.sound.Sound] = None, inventory: List[earwax.story.world.RoomObject] = NOTHING, reverb: Optional[GlobalFdnReverb] = None, object_ambiances: Dict[str, List[earwax.ambiance.Ambiance]] = NOTHING, object_tracks: Dict[str, List[earwax.track.Track]] = NOTHING, filename: Optional[pathlib.Path] = None, builder_menu_actions: List[earwax.action.Action] = NOTHING)

	Bases: earwax.story.play_level.PlayLevel

A level for editing stories.

	
add_action(obj: Union[earwax.story.world.RoomObject, earwax.story.world.RoomExit, earwax.story.world.StoryWorld], name: str) → Callable[[], None]

	Add a new action to the given object.

	Parameters

	
	obj – The object to assign the new action to.

	name – The attribute name to use.

	
add_ambiance(ambiances: List[earwax.story.world.WorldAmbiance]) → Callable[[], Generator[None, None, None]]

	Add a new ambiance to the given list.

	
ambiance_menu(ambiances: List[earwax.story.world.WorldAmbiance], ambiance: earwax.story.world.WorldAmbiance) → Callable[[], Generator[None, None, None]]

	Push the edit ambiance menu.

	
ambiances_menu() → Generator[None, None, None]

	Push a menu that can edit ambiances.

	
builder_menu() → Generator[None, None, None]

	Push the builder menu.

	
configure_reverb() → None

	Configure the reverb for the current room.

	
create_exit() → Generator[None, None, None]

	Link this room to another.

	
create_menu() → Generator[None, None, None]

	Show the creation menu.

	
create_object() → None

	Create a new object in the current room.

	
create_room() → None

	Create a new room.

	
delete() → None

	Delete the currently focused object.

	
delete_ambiance(ambiances: List[earwax.story.world.WorldAmbiance], ambiance: earwax.story.world.WorldAmbiance) → Callable[[], None]

	Delete the ambiance.

	
describe_room() → Generator[None, None, None]

	Set the description for the current room.

	
edit_action(obj: Union[earwax.story.world.RoomObject, earwax.story.world.RoomExit, earwax.story.world.StoryWorld], action: earwax.story.world.WorldAction) → Callable[[], None]

	Push a menu that allows editing of the action.

	Parameters

	
	obj – The object the action is attached to.

	action – The action to edit (or delete).

	
edit_ambiance(ambiance: earwax.story.world.WorldAmbiance) → Callable[[], Generator[None, None, None]]

	Edit the ambiance.

	
edit_object_class(class_: earwax.story.world.RoomObjectClass) → Callable[[], None]

	Push a menu for editing object classes.

	Parameters

	class – The object class to edit.

	
edit_object_class_names() → None

	Push a menu that can edit object class names.

	
edit_object_classes() → None

	Push a menu for editing object classes.

	
edit_volume_multiplier(ambiance: earwax.story.world.WorldAmbiance) → Callable[[], Generator[None, None, None]]

	Return a callable that can be used to set an ambiance volume multiplier.

	Parameters

	ambiance – The ambiance whose volume multiplier will be changed.

	
get_rooms(include_current: bool = True) → List[earwax.story.world.WorldRoom]

	Return a list of rooms from this world.

	Parameters

	include_current – If this value is True, the current room
will be included.

	
goto_room() → Generator[None, None, None]

	Let the player choose a room to go to.

	
object_actions() → Generator[None, None, None]

	Push a menu that lets you configure object actions.

	
remessage() → Optional[Generator[None, None, None]]

	Set a message on the currently-focused object.

	
rename() → Generator[None, None, None]

	Rename the currently focused object.

	
reposition_object() → None

	Reposition the currently selected object.

	
room

	Return the current room.

	
save_world() → None

	Save the world.

	
set_action_sound(action: earwax.story.world.WorldAction) → Generator[None, None, None]

	Set the sound on the given action.

	Parameters

	action – The action whose sound will be changed.

	
set_message(action: earwax.story.world.WorldAction) → Generator[None, None, None]

	Push an editor to set the message on the provided action.

	Parameters

	action – The action whose message attribute will be modified.

	
set_name(obj: Union[earwax.story.world.WorldAction, earwax.story.world.RoomObject, earwax.story.world.WorldRoom]) → Generator[None, None, None]

	Push an editor that can be used to change the name of obj.

	Parameters

	obj – The object to rename.

	
set_object_type() → None

	Change the type of an object.

	
set_world_messages() → Generator[None, None, None]

	Push a menu that allows the editing of world messages.

	
set_world_sound(name: str) → Callable[[], Generator[None, None, None]]

	Set the given sound.

	Parameters

	name – The name of the sound to edit.

	
shadow_description() → None

	Set the description of this room from another room.

	
shadow_name() → None

	Sow a menu to select another room whose name will be shadowed.

	
sounds_menu() → Optional[Generator[None, None, None]]

	Add or remove ambiances for the currently focused object.

	
world_sounds() → Generator[None, None, None]

	Push a menu that can be used to configure world sounds.

	
class earwax.story.ObjectPositionLevel(game: Game, object: Union[earwax.story.world.RoomObject, earwax.story.world.RoomExit], level: EditLevel, initial_position: Optional[earwax.story.world.DumpablePoint] = NOTHING)

	Bases: earwax.level.Level

A level for editing the position of an object.

	Variables

	
	object – The object or
exit whose position will be edited.

	level – The edit level
which pushed this level.

	
backward() → None

	Move the sound backwards.

	
cancel() → None

	Undo the move, and return everything to how it was.

	
clear() → None

	Clear the object position.

	
done() → None

	Finish editing.

	
down() → None

	Move the sound down.

	
forward() → None

	Move the sound forwards.

	
get_initial_position() → Optional[earwax.story.world.DumpablePoint]

	Get the object position.

	
left() → None

	Move the sound left.

	
move(x: int = 0, y: int = 0, z: int = 0) → None

	Change the position of this object.

	
reset() → None

	Reset the current room.

	
right() → None

	Move the sound right.

	
up() → None

	Move the sound up.

	
class earwax.story.PlayLevel(game: Game, world_context: StoryContext, cursor_sound: Optional[earwax.sound.Sound] = None, inventory: List[earwax.story.world.RoomObject] = NOTHING, reverb: Optional[GlobalFdnReverb] = None, object_ambiances: Dict[str, List[earwax.ambiance.Ambiance]] = NOTHING, object_tracks: Dict[str, List[earwax.track.Track]] = NOTHING)

	Bases: earwax.level.Level

A level that can be used to play a story.

Instances of this class can only play stories, not edit them.

	Variables

	
	world_context – The context that contains the world, and the state for
this story.

	action_sounds – The sounds which were started by object actions.

	cursor_sound – The sound that plays when moving through objects and
ambiances.

	inventory – The list of Roomobject
instances that the player is carrying.

	reverb – The reverb object for the
current room.

	object_ambiances – The ambiances for a all objects in the room,
excluding those in the players’ inventory.

	object_tracks – The tracks for each object in the current room,
excluding those objects that are in the player’s inventory.

	
actions_menu(obj: earwax.story.world.RoomObject, menu_action: Optional[earwax.story.world.WorldAction] = None) → None

	Show a menu of object actions.

	Parameters

	
	obj – The object which the menu will be shown for.

	menu_action – The action which will be used instead of the
default actions_action.

	
activate() → None

	Activate the currently focussed object.

	
build_inventory() → None

	Build the player inventory.

This method should be performed any time
state changes.

	
cycle_category(direction: int) → Generator[None, None, None]

	Cycle through information categories.

	
cycle_object(direction: int) → None

	Cycle through objects.

	
do_action(action: earwax.story.world.WorldAction, obj: Union[earwax.story.world.RoomObject, earwax.story.world.RoomExit], pan: bool = True) → None

	Actually perform an action.

	Parameters

	
	action – The action to perform.

	obj – The object that owns this action.

If this value is of type RoomObject,
and its position value is
not None, then the action sound will be panned accordingly..

	pan – If this value evaluates to False, then regardless of
the obj value, no panning will be performed.

	
drop_object(obj: earwax.story.world.RoomObject) → Callable[[], None]

	Return a callable that can be used to drop an object.

	
drop_object_menu() → None

	Push a menu that can be used to drop an object.

	
get_gain(type: earwax.track.TrackTypes, multiplier: float) → float

	Return the proper gain.

	
get_objects() → List[earwax.story.world.RoomObject]

	Return a list of objects that the player can see.

This method will exclude objects which are in the as yet unimplemented
player inventory.

The resulting list will be sorted with Python’s sorted builtin.

	
inventory_menu() → None

	Show the inventory menu.

	
main_menu() → Generator[None, None, None]

	Return to the main menu.

	
next_category() → Generator[None, None, None]

	Next information category.

	
next_object() → None

	Go to the next object.

	
object

	Return the object from self.state.

	
object_menu(obj: earwax.story.world.RoomObject) → Callable[[], None]

	Return a callable which shows the inventory menu for an object.

	
objects_menu(objects: List[earwax.story.world.RoomObject], func: Callable[[earwax.story.world.RoomObject], Callable[[], None]], title: str) → None

	Push a menu of objects.

	
on_pop() → None

	Stop all the action sounds.

	
on_push() → None

	Set the initial room.

The room is the world from the state object, rather than the
initial_room.

	
pause() → None

	Pause All the currently-playing room sounds.

	
perform_action(obj: earwax.story.world.RoomObject, action: earwax.story.world.WorldAction) → Callable[[], None]

	Return a function that will perform an object action.

This method is used by actions_menu() to allow the player to
trigger object actions.

The inner method performs the following actions:

	Shows the action message to the player.

	
	Plays the action sound. If obj has coordinates, the sound will be

	heard at those coordinates.

	Pops the level to remove the actions menu from the stack.

	Parameters

	
	obj – The object which has the action.

	action – The action which should be performed.

	
play_action_sound(sound: str, position: Optional[earwax.point.Point] = None) → None

	Play an action sound.

	Parameters

	
	sound – The filename of the sound to play.

	position – The position of the owning object.

If this value is None, the sound will not be panned.

	
play_cursor_sound(position: Optional[earwax.point.Point]) → None

	Play and set the cursor sound.

	
play_object_ambiances(obj: earwax.story.world.RoomObject) → None

	Play all the ambiances for the given object.

	Parameters

	obj – The object whose ambiances will be played.

	
previous_category() → Generator[None, None, None]

	Previous information category.

	
previous_object() → None

	Go to the previous object.

	
save_state() → None

	Save the current state.

	
set_room(room: earwax.story.world.WorldRoom) → None

	Move to a new room.

	
state

	Return the current state.

	
stop_action_sounds() → None

	Stop all action sounds.

	
stop_object_ambiances(obj: earwax.story.world.RoomObject) → None

	Stop all the ambiances for the given object.

	Parameters

	obj – The object whose ambiances will be stopped.

	
take_object(obj: earwax.story.world.RoomObject) → None

	Take an object.

	
use_exit(x: earwax.story.world.RoomExit) → None

	Use the given exit.

This method is called by the activate() method.

	Parameters

	x – The exit to use.

	
use_object(obj: earwax.story.world.RoomObject) → Callable[[], None]

	Return a callable that can be used to use an object.

	
use_object_menu() → None

	Push a menu that allows using an object.

	
world

	Get the attached world.

	
class earwax.story.StoryContext(game: earwax.game.Game, world: earwax.story.world.StoryWorld, edit: bool = NOTHING, state: earwax.story.world.WorldState = NOTHING, errors: List[str] = NOTHING, warnings: List[str] = NOTHING)

	Bases: object

Holds references to various objects required to make a story work.

	
before_run() → None

	Set the default panning strategy.

	
configure_earwax() → None

	Push a menu that can be used to configure Earwax.

	
configure_music() → None

	Allow adding and removing main menu music.

	
credit_menu(credit: earwax.credit.Credit) → Callable[[], None]

	Push a menu that can deal with credits.

	
credits_menu() → None

	Add or remove credits.

	
earwax_bug() → None

	Open the Earwax new issue URL.

	
get_default_config_file() → pathlib.Path

	Get the default configuration filename.

	
get_default_logger() → logging.Logger

	Return a default logger.

	
get_default_state() → earwax.story.world.WorldState

	Get a default state.

	
get_main_menu() → earwax.menus.menu.Menu

	Create a main menu for this world.

	
get_window_caption() → str

	Return a suitable window title.

	
load() → None

	Load an existing game, and start it.

	
play() → None

	Push the world level.

	
push_credits() → None

	Push the credits menu.

	
set_initial_room() → None

	Set the initial room.

	
set_panner_strategy() → None

	Allow the changing of the panner strategy.

	
show_warnings() → None

	Show any generated warnings.

	
world_options() → None

	Configure the world.

earwax.story.context module

Provides the StoryContext class.

	
class earwax.story.context.StoryContext(game: earwax.game.Game, world: earwax.story.world.StoryWorld, edit: bool = NOTHING, state: earwax.story.world.WorldState = NOTHING, errors: List[str] = NOTHING, warnings: List[str] = NOTHING)

	Bases: object

Holds references to various objects required to make a story work.

	
before_run() → None

	Set the default panning strategy.

	
configure_earwax() → None

	Push a menu that can be used to configure Earwax.

	
configure_music() → None

	Allow adding and removing main menu music.

	
credit_menu(credit: earwax.credit.Credit) → Callable[[], None]

	Push a menu that can deal with credits.

	
credits_menu() → None

	Add or remove credits.

	
earwax_bug() → None

	Open the Earwax new issue URL.

	
get_default_config_file() → pathlib.Path

	Get the default configuration filename.

	
get_default_logger() → logging.Logger

	Return a default logger.

	
get_default_state() → earwax.story.world.WorldState

	Get a default state.

	
get_main_menu() → earwax.menus.menu.Menu

	Create a main menu for this world.

	
get_window_caption() → str

	Return a suitable window title.

	
load() → None

	Load an existing game, and start it.

	
play() → None

	Push the world level.

	
push_credits() → None

	Push the credits menu.

	
set_initial_room() → None

	Set the initial room.

	
set_panner_strategy() → None

	Allow the changing of the panner strategy.

	
show_warnings() → None

	Show any generated warnings.

	
world_options() → None

	Configure the world.

earwax.story.edit_level module

Provides the EditLevel class.

	
class earwax.story.edit_level.EditLevel(game: Game, world_context: StoryContext, cursor_sound: Optional[earwax.sound.Sound] = None, inventory: List[earwax.story.world.RoomObject] = NOTHING, reverb: Optional[GlobalFdnReverb] = None, object_ambiances: Dict[str, List[earwax.ambiance.Ambiance]] = NOTHING, object_tracks: Dict[str, List[earwax.track.Track]] = NOTHING, filename: Optional[pathlib.Path] = None, builder_menu_actions: List[earwax.action.Action] = NOTHING)

	Bases: earwax.story.play_level.PlayLevel

A level for editing stories.

	
add_action(obj: Union[earwax.story.world.RoomObject, earwax.story.world.RoomExit, earwax.story.world.StoryWorld], name: str) → Callable[[], None]

	Add a new action to the given object.

	Parameters

	
	obj – The object to assign the new action to.

	name – The attribute name to use.

	
add_ambiance(ambiances: List[earwax.story.world.WorldAmbiance]) → Callable[[], Generator[None, None, None]]

	Add a new ambiance to the given list.

	
ambiance_menu(ambiances: List[earwax.story.world.WorldAmbiance], ambiance: earwax.story.world.WorldAmbiance) → Callable[[], Generator[None, None, None]]

	Push the edit ambiance menu.

	
ambiances_menu() → Generator[None, None, None]

	Push a menu that can edit ambiances.

	
builder_menu() → Generator[None, None, None]

	Push the builder menu.

	
configure_reverb() → None

	Configure the reverb for the current room.

	
create_exit() → Generator[None, None, None]

	Link this room to another.

	
create_menu() → Generator[None, None, None]

	Show the creation menu.

	
create_object() → None

	Create a new object in the current room.

	
create_room() → None

	Create a new room.

	
delete() → None

	Delete the currently focused object.

	
delete_ambiance(ambiances: List[earwax.story.world.WorldAmbiance], ambiance: earwax.story.world.WorldAmbiance) → Callable[[], None]

	Delete the ambiance.

	
describe_room() → Generator[None, None, None]

	Set the description for the current room.

	
edit_action(obj: Union[earwax.story.world.RoomObject, earwax.story.world.RoomExit, earwax.story.world.StoryWorld], action: earwax.story.world.WorldAction) → Callable[[], None]

	Push a menu that allows editing of the action.

	Parameters

	
	obj – The object the action is attached to.

	action – The action to edit (or delete).

	
edit_ambiance(ambiance: earwax.story.world.WorldAmbiance) → Callable[[], Generator[None, None, None]]

	Edit the ambiance.

	
edit_object_class(class_: earwax.story.world.RoomObjectClass) → Callable[[], None]

	Push a menu for editing object classes.

	Parameters

	class – The object class to edit.

	
edit_object_class_names() → None

	Push a menu that can edit object class names.

	
edit_object_classes() → None

	Push a menu for editing object classes.

	
edit_volume_multiplier(ambiance: earwax.story.world.WorldAmbiance) → Callable[[], Generator[None, None, None]]

	Return a callable that can be used to set an ambiance volume multiplier.

	Parameters

	ambiance – The ambiance whose volume multiplier will be changed.

	
get_rooms(include_current: bool = True) → List[earwax.story.world.WorldRoom]

	Return a list of rooms from this world.

	Parameters

	include_current – If this value is True, the current room
will be included.

	
goto_room() → Generator[None, None, None]

	Let the player choose a room to go to.

	
object_actions() → Generator[None, None, None]

	Push a menu that lets you configure object actions.

	
remessage() → Optional[Generator[None, None, None]]

	Set a message on the currently-focused object.

	
rename() → Generator[None, None, None]

	Rename the currently focused object.

	
reposition_object() → None

	Reposition the currently selected object.

	
room

	Return the current room.

	
save_world() → None

	Save the world.

	
set_action_sound(action: earwax.story.world.WorldAction) → Generator[None, None, None]

	Set the sound on the given action.

	Parameters

	action – The action whose sound will be changed.

	
set_message(action: earwax.story.world.WorldAction) → Generator[None, None, None]

	Push an editor to set the message on the provided action.

	Parameters

	action – The action whose message attribute will be modified.

	
set_name(obj: Union[earwax.story.world.WorldAction, earwax.story.world.RoomObject, earwax.story.world.WorldRoom]) → Generator[None, None, None]

	Push an editor that can be used to change the name of obj.

	Parameters

	obj – The object to rename.

	
set_object_type() → None

	Change the type of an object.

	
set_world_messages() → Generator[None, None, None]

	Push a menu that allows the editing of world messages.

	
set_world_sound(name: str) → Callable[[], Generator[None, None, None]]

	Set the given sound.

	Parameters

	name – The name of the sound to edit.

	
shadow_description() → None

	Set the description of this room from another room.

	
shadow_name() → None

	Sow a menu to select another room whose name will be shadowed.

	
sounds_menu() → Optional[Generator[None, None, None]]

	Add or remove ambiances for the currently focused object.

	
world_sounds() → Generator[None, None, None]

	Push a menu that can be used to configure world sounds.

	
class earwax.story.edit_level.ObjectPositionLevel(game: Game, object: Union[earwax.story.world.RoomObject, earwax.story.world.RoomExit], level: EditLevel, initial_position: Optional[earwax.story.world.DumpablePoint] = NOTHING)

	Bases: earwax.level.Level

A level for editing the position of an object.

	Variables

	
	object – The object or
exit whose position will be edited.

	level – The edit level
which pushed this level.

	
backward() → None

	Move the sound backwards.

	
cancel() → None

	Undo the move, and return everything to how it was.

	
clear() → None

	Clear the object position.

	
done() → None

	Finish editing.

	
down() → None

	Move the sound down.

	
forward() → None

	Move the sound forwards.

	
get_initial_position() → Optional[earwax.story.world.DumpablePoint]

	Get the object position.

	
left() → None

	Move the sound left.

	
move(x: int = 0, y: int = 0, z: int = 0) → None

	Change the position of this object.

	
reset() → None

	Reset the current room.

	
right() → None

	Move the sound right.

	
up() → None

	Move the sound up.

	
earwax.story.edit_level.push_actions_menu(game: earwax.game.Game, actions: List[earwax.story.world.WorldAction], activate: Callable[[earwax.story.world.WorldAction], Optional[Generator[None, None, None]]]) → Generator[None, None, None]

	Push a menu that lets the player select an action.

	Parameters

	
	game – The game to use when constructing the menu.

	actions – A list of actions to show.

	activate – A function to call with the chosen action.

	
earwax.story.edit_level.push_rooms_menu(game: earwax.game.Game, rooms: List[earwax.story.world.WorldRoom], activate: Callable[[earwax.story.world.WorldRoom], Optional[Generator[None, None, None]]]) → Generator[None, None, None]

	Push a menu with all the provided rooms.

	Parameters

	
	game – The game to pop this level from when a room is selected.

	rooms – The rooms which should show up in the menu.

	activate – The function to call with the selected room.

earwax.story.play_level module

Provides the StoryLevel class.

	
class earwax.story.play_level.PlayLevel(game: Game, world_context: StoryContext, cursor_sound: Optional[earwax.sound.Sound] = None, inventory: List[earwax.story.world.RoomObject] = NOTHING, reverb: Optional[GlobalFdnReverb] = None, object_ambiances: Dict[str, List[earwax.ambiance.Ambiance]] = NOTHING, object_tracks: Dict[str, List[earwax.track.Track]] = NOTHING)

	Bases: earwax.level.Level

A level that can be used to play a story.

Instances of this class can only play stories, not edit them.

	Variables

	
	world_context – The context that contains the world, and the state for
this story.

	action_sounds – The sounds which were started by object actions.

	cursor_sound – The sound that plays when moving through objects and
ambiances.

	inventory – The list of Roomobject
instances that the player is carrying.

	reverb – The reverb object for the
current room.

	object_ambiances – The ambiances for a all objects in the room,
excluding those in the players’ inventory.

	object_tracks – The tracks for each object in the current room,
excluding those objects that are in the player’s inventory.

	
actions_menu(obj: earwax.story.world.RoomObject, menu_action: Optional[earwax.story.world.WorldAction] = None) → None

	Show a menu of object actions.

	Parameters

	
	obj – The object which the menu will be shown for.

	menu_action – The action which will be used instead of the
default actions_action.

	
activate() → None

	Activate the currently focussed object.

	
build_inventory() → None

	Build the player inventory.

This method should be performed any time
state changes.

	
cycle_category(direction: int) → Generator[None, None, None]

	Cycle through information categories.

	
cycle_object(direction: int) → None

	Cycle through objects.

	
do_action(action: earwax.story.world.WorldAction, obj: Union[earwax.story.world.RoomObject, earwax.story.world.RoomExit], pan: bool = True) → None

	Actually perform an action.

	Parameters

	
	action – The action to perform.

	obj – The object that owns this action.

If this value is of type RoomObject,
and its position value is
not None, then the action sound will be panned accordingly..

	pan – If this value evaluates to False, then regardless of
the obj value, no panning will be performed.

	
drop_object(obj: earwax.story.world.RoomObject) → Callable[[], None]

	Return a callable that can be used to drop an object.

	
drop_object_menu() → None

	Push a menu that can be used to drop an object.

	
get_gain(type: earwax.track.TrackTypes, multiplier: float) → float

	Return the proper gain.

	
get_objects() → List[earwax.story.world.RoomObject]

	Return a list of objects that the player can see.

This method will exclude objects which are in the as yet unimplemented
player inventory.

The resulting list will be sorted with Python’s sorted builtin.

	
inventory_menu() → None

	Show the inventory menu.

	
main_menu() → Generator[None, None, None]

	Return to the main menu.

	
next_category() → Generator[None, None, None]

	Next information category.

	
next_object() → None

	Go to the next object.

	
object

	Return the object from self.state.

	
object_menu(obj: earwax.story.world.RoomObject) → Callable[[], None]

	Return a callable which shows the inventory menu for an object.

	
objects_menu(objects: List[earwax.story.world.RoomObject], func: Callable[[earwax.story.world.RoomObject], Callable[[], None]], title: str) → None

	Push a menu of objects.

	
on_pop() → None

	Stop all the action sounds.

	
on_push() → None

	Set the initial room.

The room is the world from the state object, rather than the
initial_room.

	
pause() → None

	Pause All the currently-playing room sounds.

	
perform_action(obj: earwax.story.world.RoomObject, action: earwax.story.world.WorldAction) → Callable[[], None]

	Return a function that will perform an object action.

This method is used by actions_menu() to allow the player to
trigger object actions.

The inner method performs the following actions:

	Shows the action message to the player.

	
	Plays the action sound. If obj has coordinates, the sound will be

	heard at those coordinates.

	Pops the level to remove the actions menu from the stack.

	Parameters

	
	obj – The object which has the action.

	action – The action which should be performed.

	
play_action_sound(sound: str, position: Optional[earwax.point.Point] = None) → None

	Play an action sound.

	Parameters

	
	sound – The filename of the sound to play.

	position – The position of the owning object.

If this value is None, the sound will not be panned.

	
play_cursor_sound(position: Optional[earwax.point.Point]) → None

	Play and set the cursor sound.

	
play_object_ambiances(obj: earwax.story.world.RoomObject) → None

	Play all the ambiances for the given object.

	Parameters

	obj – The object whose ambiances will be played.

	
previous_category() → Generator[None, None, None]

	Previous information category.

	
previous_object() → None

	Go to the previous object.

	
save_state() → None

	Save the current state.

	
set_room(room: earwax.story.world.WorldRoom) → None

	Move to a new room.

	
state

	Return the current state.

	
stop_action_sounds() → None

	Stop all action sounds.

	
stop_object_ambiances(obj: earwax.story.world.RoomObject) → None

	Stop all the ambiances for the given object.

	Parameters

	obj – The object whose ambiances will be stopped.

	
take_object(obj: earwax.story.world.RoomObject) → None

	Take an object.

	
use_exit(x: earwax.story.world.RoomExit) → None

	Use the given exit.

This method is called by the activate() method.

	Parameters

	x – The exit to use.

	
use_object(obj: earwax.story.world.RoomObject) → Callable[[], None]

	Return a callable that can be used to use an object.

	
use_object_menu() → None

	Push a menu that allows using an object.

	
world

	Get the attached world.

earwax.story.world module

Provides various classes relating to worlds.

	
class earwax.story.world.DumpablePoint(x: T, y: T, z: T)

	Bases: earwax.point.Point, earwax.mixins.DumpLoadMixin

A point that can be dumped and loaded.

	
class earwax.story.world.DumpableReverb(gain: float = 1.0, late_reflections_delay: float = 0.01, late_reflections_diffusion: float = 1.0, late_reflections_hf_reference: float = 500.0, late_reflections_hf_rolloff: float = 0.5, late_reflections_lf_reference: float = 200.0, late_reflections_lf_rolloff: float = 1.0, late_reflections_modulation_depth: float = 0.01, late_reflections_modulation_frequency: float = 0.5, mean_free_path: float = 0.02, t60: float = 1.0)

	Bases: earwax.reverb.Reverb, earwax.mixins.DumpLoadMixin

A reverb that can be dumped.

	
class earwax.story.world.RoomExit(destination_id: str, action: earwax.story.world.WorldAction = NOTHING, position: Optional[earwax.story.world.DumpablePoint] = None)

	Bases: earwax.mixins.DumpLoadMixin

An exit between two rooms.

Instances of this class rely on their action property to show
messages and play sounds, as well as for the name of the exit.

The actual destination can be retrieved with the destination
property.

	Variables

	
	destination_id – The ID of the room on the
other side of this exit.

	location – The location of this exit.

This value is provided by the containing
StoryWorld class.

	action – An action to perform when using this
exit.

	position – The position of this exit.

If this value is None, then any ambiances will not be
panned.

	
destination

	Return the room this exit leads from.

This value is inferred from destination_id.

	
class earwax.story.world.RoomObject(id: str = NOTHING, name: str = 'Unnamed Object', actions_action: Optional[earwax.story.world.WorldAction] = None, ambiances: List[earwax.story.world.WorldAmbiance] = NOTHING, actions: List[earwax.story.world.WorldAction] = NOTHING, position: Optional[earwax.story.world.DumpablePoint] = None, drop_action: Optional[earwax.story.world.WorldAction] = None, take_action: Optional[earwax.story.world.WorldAction] = None, use_action: Optional[earwax.story.world.WorldAction] = None, type: earwax.story.world.RoomObjectTypes = NOTHING, class_names: List[str] = NOTHING)

	Bases: earwax.story.world.StringMixin, earwax.mixins.DumpLoadMixin

An object in the story.

Instances of this class will either sit in a room, or be in the player’s
inventory.

	Variables

	
	id – The unique ID of this object. If this ID
is not provided, then picking it up will not be reliable, as the ID
will be randomly generated.

Other than the above restriction, you can set the ID to be whatever you
like.

	name – The name of this object.

This value will be used in any list of objects.

	actions_action – An action object which will
be used when viewing the actions menu for this object.

If this value is None, no music will play when viewing the actions
menu for this object, and the
actions_menu message will be shown.

	ambiances – A list of ambiances to play at
the position of this object.

	actions – A list of actions that can be
performed on this object.

	position – The position of this object.

If this value is None, then any ambiances will not be
panned.

	drop_action – The action that will be used
when this object is dropped by the player.

If this value is None, the containing world’s
drop_action attribute will be used.

	take_action – The action that will be used
when this object is taken by the player.

If this value is None, the containing world’s
take_action attribute will be used.

	use_action – The action that will be used
when this object is used by the player.

If this value is None, then this object is considered unusable.

	type – Specifies what sort of object this is.

	class_names – The names of all the classes
this object belongs to.

If you want a list of RoomObjectClass instances,
use the classes property.

	location – The room where this object is
located.

This value is set by the StoryWorld() which holds
this instance.

If this object is picked up, the location will not change, but this
object will be removed from the location’s
objects dictionary.

	
classes

	Return a list of classes.

This value is inferred from the
class_names list.

	
is_droppable

	Return True if this object can be dropped.

	
is_stuck

	Return True if this object is stuck.

	
is_takeable

	Return True if this object can be taken.

	
is_usable

	Return True if this object can be used.

	
class earwax.story.world.RoomObjectClass(name: str)

	Bases: earwax.mixins.DumpLoadMixin

Add a class for objects.

Instances of this class let you organise objects into classes.

This is used for making exits discriminate.

	Variables

	name – The name of the class.

	
class earwax.story.world.RoomObjectTypes

	Bases: enum.Enum

The type of a room object.

	Variables

	
	stuck – This object cannot be moved.

	takeable – This object can be picked up.

	droppable – This object can be dropped.

This value automatically implies
takeable.

	
droppable = 2

	

	
stuck = 0

	

	
takeable = 1

	

	
usable = 4

	

	
class earwax.story.world.StoryWorld(game: Game, name: str = 'Untitled World', author: str = 'Unknown', main_menu_musics: List[str] = NOTHING, cursor_sound: Optional[str] = None, empty_category_sound: Optional[str] = None, end_of_category_sound: Optional[str] = None, rooms: Dict[str, earwax.story.world.WorldRoom] = NOTHING, initial_room_id: Optional[str] = None, messages: earwax.story.world.WorldMessages = NOTHING, take_action: earwax.story.world.WorldAction = NOTHING, drop_action: earwax.story.world.WorldAction = NOTHING, panner_strategy: str = NOTHING, object_classes: List[earwax.story.world.RoomObjectClass] = NOTHING)

	Bases: earwax.mixins.DumpLoadMixin

The top level world object.

Worlds can contain rooms and messages, as well as various pieces of
information about themselves.

	Variables

	
	game – The game this world is part of.

	name – The name of this world.

	author – The author of this world.

The format of this value is arbitrary, although
Author Name <author@domain.com> is recommended.

	main_menu_musics – A list of filenames to
play as music while the main menu is being shown.

	cursor_sound – The sound that will play when
moving over objects.

If this value is None, no sound will be heard.

	empty_category_sound – The sound which will
be heard when cycling to an empty category.

	end_of_category_sound – The sound which will
be heard when cycling to the end of a category.

	rooms – A mapping of room IDs to rooms.

	initial_room_id – The ID of the room to be
used when first starting the game.

	messages – The messages object used by this
world.

	take_action – The default take action.

This value will be used when an object is taken with its
take_action attribute set to None.

	drop_action – The default drop action.

This value will be used when an object is dropped and has its
drop_action attribute is None.

	panner_strategy – The name of the default
panner strategy to use.

	object_classes – A list of object classes.

Objects are mapped to these classes by way of their
class_names and
classes lists.

	
add_room(room: earwax.story.world.WorldRoom, initial: Optional[bool] = None) → None

	Add a room to this world.

	Parameters

	
	room – The room to add.

	initial – An optional boolean to specify whether the given room
should become the
initial_room or not.

If this value is None, then this room will be set as default if
initial_room_id is itself
None.

	
all_objects() → Iterator[earwax.story.world.RoomObject]

	Return a generator of every object contained by this world.

	
dump() → Dict[str, Any]

	Dump this world.

	
initial_room

	Return the initial room for this world.

	
classmethod load(data: Dict[str, Any], *args) → Any

	Load credits before anything else.

	
class earwax.story.world.StringMixin

	Bases: object

Provides an __str__ method.

	
class earwax.story.world.WorldAction(name: str = 'Unnamed Action', message: Optional[str] = None, sound: Optional[str] = None, rumble_value: float = 0.0, rumble_duration: int = 0)

	Bases: earwax.mixins.DumpLoadMixin

An action that can be performed.

Actions are used by the RoomObject and RoomExit classes.

If attached to a RoomObject instance, its
name will appear in the action menu. If attached to a RoomExit instance,
then its name will appear in the exits list.

	Variables

	
	name – The name of this action.

	message – The message that is shown to the
player when this action is used.

If this value is omitted, no message will be shown.

	sound – The sound that should play when this
action is used.

If this value is omitted, no sound will be heard.

	rumble_value – The power of a rumble
triggered by this action.

This value should be between 0.0 (nothing) and 1.0 (full power).

If this value is 0, no rumble will occur.

	rumble_duration – The time (in seconds) the
rumble should continue for.

If this value is 0, no rumble will occur.

	
class earwax.story.world.WorldAmbiance(path: str, volume_multiplier: float = 1.0)

	Bases: earwax.mixins.DumpLoadMixin

An ambiance.

This class represents a looping sound, which is either attached to a
WorldRoom instance, or a RoomObject instance.

	Variables

	
	path – The path to a sound file.

	volume_multiplier – A value to multiply
the ambiance volume by to get the volume for this sound..

	
class earwax.story.world.WorldMessages(no_objects: str = 'This room is empty.', no_actions: str = 'There is nothing you can do with this object.', no_exits: str = 'There is no way out of this room.', no_use: str = 'You cannot use {}.', nothing_to_use: str = 'You have nothing that can be used.', nothing_to_drop: str = 'You have nothing that can be dropped.', empty_inventory: str = "You aren't carrying anything.", room_activate: str = 'You cannot do that.', room_category: str = 'Location', objects_category: str = 'Objects', exits_category: str = 'Exits', actions_menu: str = 'You step up to {}.', inventory_menu: str = 'Inventory', main_menu: str = 'Main Menu', play_game: str = 'Start new game', load_game: str = 'Load game', show_credits: str = 'Show Credits', credits_menu: str = 'Credits', welcome: str = 'Welcome to this game.', no_saved_game: str = 'You have no game saved.', exit: str = 'Exit')

	Bases: earwax.mixins.DumpLoadMixin

All the messages that can be shown to the player.

When adding a message to this class, make sure to add the same message and
an appropriate description to the message_descriptions in
earwax/story/edit_level.py.

	Variables

	
	no_objects – The message which is shown
when the player cycles to an empty list of objects.

	no_actions – The message which is shown
when there are no actions for an object.

	no_exits – The message which is shown when
the player cycles to an empty list of exits.

	no_use – The message which is shown when
the player tries to use an object which cannot be used.

	nothing_to_use – The message which is
shown when accessing the use menu with no usable objects.

	nothing_to_drop – The message which is
shown when accessing the drop menu with no droppable items.

	empty_inventory – The message which is
shown when trying to access an empty inventory menu.

	room_activate – The message which is shown
when enter is pressed with the room category selected.

Maybe an action attribute should be added to rooms, so that enter can
be used everywhere?

	room_category – The name of the “room”
category.

	objects_category – The name of the
“objects” category.

	exits_category – The name of the “exits”
category.

	actions_menu – The message which is shown
when the actions menu is activated.

	inventory_menu – The title of the
inventory menu.

You can include the name of the object in question, by including a set
of braces:

<message id="actions_menu">You examine {}.</message>

	main_menu – The title of the main menu.

	play_game – The title of the “play game”
entry in the main menu.

	load_game – The title of the “load game”
entry in the main menu.

	show_credits – The title of the “show
credits” entry in the main menu.

	credits_menu – The title of the credits
menu.

	welcome – The message which is shown when
play starts.

	no_saved_game – The message which is
spoken when there is no game to load.

	exit – The title of the “exit” entry of
the main menu.

	
class earwax.story.world.WorldRoom(id: str = NOTHING, name: str = 'Unnamed Room', description: str = 'Not described.', ambiances: List[earwax.story.world.WorldAmbiance] = NOTHING, objects: Dict[str, earwax.story.world.RoomObject] = NOTHING, exits: List[earwax.story.world.RoomExit] = NOTHING, reverb: Optional[earwax.story.world.DumpableReverb] = None)

	Bases: earwax.mixins.DumpLoadMixin, earwax.story.world.StringMixin

A room in a world.

Rooms can contain exits and object.

It is worth noting that both the room name and description
can either be straight text, or they can consist of a hash character (#)
followed by the ID of another room, from which the relevant attribute will
be presented at runtime.

If this is the case, changing the name or description of the referenced
room will change the corresponding attribute on the first instance.

This convertion can only happen once, as otherwise there is a risk of
circular dependencies, causing a RecursionError to be raised.

	Variables

	
	world – The world this room is part of.

This value is set by the containing
StoryRoom instance.

	id – The unique ID of this room.

If this value is not provided, then an ID will be generated, based on
the number of rooms that have already been loaded.

If you want to link this room with exits, it is highly recommended
that you provide your own ID.

	name – The name of this room, or the #id of a
room to inherit the name from.

	description – The description of this room, or
the #id of another room to inherit the description from.

	ambiances – A list of ambiances to play when
this room is in focus.

	objects – A mapping of object ids to objects.

To get a list of objects, the canonical way is to use the
earwax.story.play_level.PlayLevel.get_objects() method, as this
will properly hide objects which are in the player’s inventory.

	exits – A list of exits from this room.

	
create_exit(destination: earwax.story.world.WorldRoom, **kwargs) → earwax.story.world.RoomExit

	Create and return an exit that links this room to another.

This method will add the new exits to this room’s
exits list, and set the appropriate
location on the new exit.

	Parameters

	
	destination – The destination whose ID will become the new exit’s
destination_id.

	kwargs – Extra keyword arguments to pass to the
RoomExit constructor..

	
create_object(**kwargs) → earwax.story.world.RoomObject

	Create and return an exit from the provided kwargs.

This method will add the created object to this room’s
objects dictionary, and set the
appropriate location attribute.

	Parameters

	kwargs – Keyword arguments to pass to the constructor of
RoomObject.

	
get_description() → str

	Return the actual description of this room.

	
get_name() → str

	Return the actual name of this room.

	
class earwax.story.world.WorldState(world: earwax.story.world.StoryWorld, room_id: str = NOTHING, inventory_ids: List[str] = NOTHING, category_index: int = NOTHING, object_index: Optional[int] = None)

	Bases: earwax.mixins.DumpLoadMixin

The state of a story.

With the exception of the world attribute, this class should only
have primitive types as its attributes, so that instances can be easily
dumped to yaml.

	Variables

	
	world – The world this state represents.

	room_id – The ID of the current room.

	inventory_ids – A list of object IDs which
make up the player’s inventory.

	category_index – The player’s position in the
list of categories.

	object_index – The player’s position in the
current category.

	
category

	Return the current category.

	
get_default_room_id() → str

	Get the first room ID from the attached world.

	Parameters

	instance – The instance to work on.

	
room

	Get the current room.

	
class earwax.story.world.WorldStateCategories

	Bases: enum.Enum

The various categories the player can select.

	Variables

	
	room – The category where the name
and description of a room are shown.

	objects – The category where the
objects of a room are shown.

	exits – The category where the
exits of a room are shown.

	
exits = 2

	

	
objects = 1

	

	
room = 0

	

earwax.action module

Provides the Action class.

	
class earwax.action.Action(title: str, func: Callable[[], Optional[Generator[None, None, None]]], symbol: Optional[int] = None, mouse_button: Optional[int] = None, modifiers: int = 0, joystick_button: Optional[int] = None, hat_direction: Optional[Tuple[int, int]] = None, interval: Optional[float] = None)

	Bases: object

An action that can be called from within a game.

Actions can be added to Level, and
ActionMap instances.

Usually, this class is not used directly, but returned by the
action() method of whatever Level
or ActionMap instance it is bound to.

	Variables

	
	title – The title of this action.

	func – The function to run.

If this value is a normal function, it will be called when the action
is triggered.

If this function is a generator, any code before the first yield
statement will be run when the triggering key, hat, joystick button, or
mouse button is pressed down. Anything after that will be run when the
same trigger is released.

It is worth noting that the behaviour of having a generator that yields
more than once is undefined.

	symbol – The keyboard symbol to be used (should be one
of the symbols from pyglet.window.key [https://pyglet.readthedocs.io/en/latest/programming_guide/keyboard.html]).

	mouse_button – The mouse button to be used (should be
one of the symbols from pyglet.window.mouse [https://pyglet.readthedocs.io/en/latest/programming_guide/mouse.html]).

	modifiers – Keyboard modifiers. Should be made up of
modifiers from pyglet.window.key.

	joystick_button – The button that must be pressed on a
game controller to trigger this action.

The button can be any integer supported by any game pad.

	hat_direction – The position the hat must be in to
trigger this action.

This value must be a value supported by the hat control on the
controller you’re targetting.

There are some helpful default values in earwax.hat_directions.
If they do not suit your purposes, simply provide your own tuple.

It is worth noting that if you rely on the hat, there are a few things
to be aware of:

If you rely on generators in hat-triggered actions, then all actions
that have yielded will be stopped when the hat returns to its default
position. This is because Earwax does not attempt to keep track of the
last direction, and the hat does not generate release events like
joystick buttons do.

	interval – How often this action can run.

If None, then it is a one-time action. One-time actions should be
used for things like quitting the game, or passing through exits, where
multiple uses in a short space of time would be undesirable. Otherwise,
it will be the number of seconds which must elapse between runs.

	last_run – The time this action was last run.

To get the number of seconds since an action was last run, use time()
- action.last_run.

	
run(dt: Optional[float]) → Optional[Generator[None, None, None]]

	Run this action.

This method may be called by
pyglet.clock.schedule_interval.

If you need to know how an action has been called, you can override
this method and check dt.

It will be None if it wasn’t called by schedule_interval. This
will happen either if you are dealing with a one-time action
(interval is None), or the action is being
called as soon as it is triggered (schedule_interval doesn’t allow
a function to be run and scheduled in one call).

If you need to call an action from your own code, you should use:

action.run(None)

	Parameters

	dt – Refer to the documentation for pyglet.clock [https://pyglet.readthedocs.io/en/latest/modules/clock.html].

earwax.action_map module

Provides the ActionMap class.

	
class earwax.action_map.ActionMap

	Bases: object

An object to hold actions.

This class is the answer to the question “What do I do when I have actions
I want to be attached to multiple levels?”

You could of course use a for loop, but this class is quicker:

action_map: ActionMap = ActionMap()

@action_map.action(...)

@action_map.action(...)

level: Level = Level(game)
level.add_actions(action_map)

	Variables

	actions – The actions to be stored on this map.

	
action(title: str, symbol: Optional[int] = None, mouse_button: Optional[int] = None, modifiers: int = 0, joystick_button: Optional[int] = None, hat_direction: Optional[Tuple[int, int]] = None, interval: Optional[float] = None) → Callable[[Callable[[], Optional[Generator[None, None, None]]]], earwax.action.Action]

	Add an action to this object.

For example:

@action_map.action(
 'Walk forwards', symbol=key.W, mouse_button=mouse.RIGHT,
 interval=0.5
)
def walk_forwards():
 # ...

It is possible to use a generator function to have code executed before
and after a trigger fires. If you need this behaviour, see the
documentation for the func attribute of
earwax.Action.

	Parameters

	
	title – The title of the new action.

This value is currently only used by earwax.ActionMenu.

	symbol – The resulting action’s symbol
attribute.

	mouse_button – The resulting action’s
mouse_button attribute.

	modifiers – The resulting action’s
modifiers attribute.

	joystick_button – The resulting action’s
joystick_button attribute.

	hat_direction – The resulting action’s
hat_direction attribute.

	interval – The resulting action’s interval
attribute.

	
add_actions(action_map: earwax.action_map.ActionMap) → None

	Add the actions from the provided map to this map.

	Parameters

	action_map – The map whose actions should be appended to this
one.

earwax.ambiance module

Provides the Ambiance class.

	
class earwax.ambiance.Ambiance(protocol: str, path: str, coordinates: earwax.point.Point)

	Bases: object

A class that represents a positioned sound on a map.

If you want to know more about the stream and path attributes, see
the documentation for synthizer.StreamingGenerator.

	Variables

	
	protocol – The protocol argument to pass to
synthizer.StreamingGenerator``.

	path – The path argument to pass to
synthizer.StreamingGenerator.

	coordinates – The coordinates of this ambiance.

	sound – The playing sound.

This value is initialised as part of the play()
method.

	
classmethod from_path(path: pathlib.Path, coordinates: earwax.point.Point) → earwax.ambiance.Ambiance

	Return a new instance from a path.

	Parameters

	
	path – The path to build the ambiance from.

If this value is a directory, then a random file will be chosen.

	coordinates – The coordinates of this ambiance.

	
play(sound_manager: earwax.sound.SoundManager, **kwargs) → None

	Load and position the sound.

	Parameters

	
	sound_manager – The sound manager which will be used to play this
ambiance.

	kwargs – The additional keyword arguments to pass to
play_path().

	
stop() → None

	Stop this ambiance from playing.

earwax.config module

Provides the Config and ConfigValue classes.

	
class earwax.config.Config

	Bases: object

Holds configuration subsections and values.

Any attribute that is an instance of earwax.Config is considered
a subsection.

Any attribute that is an instance of earwax.ConfigValue is
considered a configuration value.

You can create sections like so:

from earwax import Config, ConfigValue

class GameConfig(Config):
 '''Example configuration page.'''

 hostname = ConfigValue('localhost')
 port = ConfigValue(1234)

c = GameConfig()

Then you can access configuration values like this:

host_string = f'{c.hostname.value}:{c.port.value}'
...

Use the dump() method to get a dictionary suitable for
dumping with json.

To set the name that will be used by earwax.ConfigMenu,
subclass earwax.Config, and include a __section_name__
attribute:

class NamedConfig(Config):
 __section_name__ = 'Options'

	Variables

	__section_name__ – The human-readable name of this
section.

At present, this attribute is only used by earwax.ConfigMenu.

	
dump() → Dict[str, Any]

	Return all configuration values, recursing through subsections.

For example:

c = ImaginaryConfiguration()
d = c.dump()
with open('config.yaml', 'w') as f:
 json.dump(d, f)

Use the populate_from_dict() method to
restore dumped values.

	
load(f: TextIO) → None

	Load data from a file.

Uses the populate_from_dict() method on dataloaded
from the given file:

c = ImaginaryConfigSection()
with open('config.yaml', 'r'):
 c.load(f)

To save the data in the first place, use the
save() method.

	Parameters

	f – A file-like object to load data from.

	
populate_from_dict(data: Dict[str, Any]) → None

	Populate values from a dictionary.

This function is compatible with (and used by)
dump():

c = Config()
with open('config.yaml', 'r') as f:
 c.populate_from_dict(json.load(f))

Any missing values from data are ignored.

	Parameters

	data – The data to load.

	
save(f: TextIO) → None

	Dump this configuration section to a file.

Uses the dump() method to get the dumpable data.

You can save a configuration section like so:

c = ImaginaryConfigSection()
with open('config.yaml', 'w') as f:
 c.save(f)

By default, YAML is used.

	Parameters

	f – A file-like object to write the resulting data to.

	
class earwax.config.ConfigValue(value: T, name: Optional[str] = None, type_: Optional[object] = None, value_converters: Optional[Dict[object, Callable[[ConfigValue], str]]] = None, dump_func: Optional[Callable[[T], T]] = None, load_func: Optional[Callable[[str], T]] = None)

	Bases: typing.Generic

A configuration value.

This class is used to make configuration values:

name = ConfigValue('username', name='Your character name', type_=str)

If you are dealing with a non-standard object, you can set custom functions
for loading and dumping the objects:

from pathlib import Path
option = ConfigValue(Path.cwd(), name='Some directory')

@option.dump
def dump_path(value: Path) -> str:
 return str(value)

@option.load
def load_path(value: str) -> Path:
 return Path(value)

	Variables

	
	value – The value held by this configuration
value.

	name – The human-readable name of this
configuration value.

The name is currently only used by earwax.ConfigMenu.

	type_ – The type of this value. Can be inferred
from value.

Currently this attribute is used by earwax.ConfigMenu to
figure out how to construct the widget that will represent this value.

	value_converters – A dictionary of type:
converter functions.

These are used by earwax.ConfigMenu.option_menu() to print
value, instead of
value_to_string().

	default – The default value for this
configuration value.

This will be inferred from value.

	dump_func – A function that will take the actual
value, and return something that YAML can dump.

	load_func – A function that takes the value that
was loaded by YAML, and returns the actual value.

	
dump(func: Callable[[T], T]) → Callable[[T], T]

	Add a dump function.

	Parameters

	func – The function that will be decorated.

See the description for dump_func.

	
load(func: Callable[[str], T]) → Callable[[str], T]

	Add a load function.

	Parameters

	func – The function that will be decorated.

See the description for load_func.

	
value_to_string() → str

	Return value as a string.

This method is used by earwax.ConfigMenu when it shows
values.

earwax.configuration module

Provides the Config class.

	
class earwax.configuration.EarwaxConfig

	Bases: earwax.config.Config

The main earwax configuration.

An instance of this value will be loaded to earwax.Game.config.

It is advised to configure the game before calling earwax.Game.run().

	
editors = <earwax.configuration.EditorConfig object>

	

	
menus = <earwax.configuration.MenuConfig object>

	

	
sound = <earwax.configuration.SoundConfig object>

	

	
speech = <earwax.configuration.SpeechConfig object>

	

	
class earwax.configuration.EditorConfig

	Bases: earwax.config.Config

Configure various things about editors.

	Variables

	hat_alphabet – The letters that can be entered
by a controller’s hat.

	
hat_alphabet = ConfigValue(value=' abcdefghijklmnopqrstuvwxyz.,1234567890@ABCDEFGHIJKLMNOPQRSTUVWXYZ-#[]{}', name='Hat alphabet', type_=<class 'str'>, value_converters=None, default=' abcdefghijklmnopqrstuvwxyz.,1234567890@ABCDEFGHIJKLMNOPQRSTUVWXYZ-#[]{}', dump_func=None, load_func=None)

	

	
class earwax.configuration.MenuConfig

	Bases: earwax.config.Config

The menu configuration section.

	Variables

	
	default_item_select_sound – The default sound to
play when a menu item is selected.

If this value is None, no sound will be played, unless specified by
the selected menu item.

	default_item_activate_sound – The default sound
to play when a menu item is activated.

If this value is None, no sound will be played, unless specified by
the activated menu item.

	
default_item_activate_sound = ConfigValue(value=None, name='The default sound that plays when activating items in menus', type_=typing.Union[pathlib.Path, NoneType], value_converters={<class 'NoneType'>: <function MenuConfig.<lambda>>}, default=None, dump_func=<function dump_path>, load_func=<function load_path>)

	

	
default_item_select_sound = ConfigValue(value=None, name='The default sound that plays when moving through menus', type_=typing.Union[pathlib.Path, NoneType], value_converters={<class 'NoneType'>: <function MenuConfig.<lambda>>}, default=None, dump_func=<function dump_path>, load_func=<function load_path>)

	

	
class earwax.configuration.SoundConfig

	Bases: earwax.config.Config

Configure various aspects of the sound system.

	Variables

	
	master_volume – The volume of
audio_context.

This value acts as a master volume, and should be changed with either
adjust_volume(), or set_volume().

	max_volume – The maximum volume allowed by
adjust_volume().

	sound_volume – The volume of general sounds.

This volume is used by earwax to set the volume of
interface_sound_manager values.

	music_volume – The volume of game music.

Earwax uses this value to set the volume of the
music_sound_manager sound manager.

	ambiance_volume – The volume of game ambiances.

Earwax uses this value to set the volume of the
ambiance_sound_manager sound manager.

	default_cache_size – The default size (in bytes)
for the default buffer_cache object.

	
ambiance_volume = ConfigValue(value=0.4, name='Ambiance volume', type_=<class 'float'>, value_converters=None, default=0.4, dump_func=None, load_func=None)

	

	
default_cache_size = ConfigValue(value=524288000, name='The size of the default sound cache in bytes', type_=<class 'int'>, value_converters=None, default=524288000, dump_func=None, load_func=None)

	

	
master_volume = ConfigValue(value=1.0, name='Master volume', type_=<class 'float'>, value_converters=None, default=1.0, dump_func=None, load_func=None)

	

	
max_volume = ConfigValue(value=1.0, name='Maximum volume', type_=<class 'float'>, value_converters=None, default=1.0, dump_func=None, load_func=None)

	

	
music_volume = ConfigValue(value=0.4, name='Music volume', type_=<class 'float'>, value_converters=None, default=0.4, dump_func=None, load_func=None)

	

	
sound_volume = ConfigValue(value=0.5, name='Sound volume', type_=<class 'float'>, value_converters=None, default=0.5, dump_func=None, load_func=None)

	

	
class earwax.configuration.SpeechConfig

	Bases: earwax.config.Config

The speech configuration section.

	Variables

	
	speak – Whether or not calls to
output() will produce speech.

	braille – Whether or not calls to
output() will produce braille.

	
braille = ConfigValue(value=True, name='Braille', type_=<class 'bool'>, value_converters=None, default=True, dump_func=None, load_func=None)

	

	
speak = ConfigValue(value=True, name='Speech', type_=<class 'bool'>, value_converters=None, default=True, dump_func=None, load_func=None)

	

	
earwax.configuration.dump_path(value: Optional[pathlib.Path]) → Optional[str]

	Return a path as a string.

	Parameters

	value – The path to convert.

	
earwax.configuration.load_path(value: Optional[str]) → Optional[pathlib.Path]

	Load a path from a string.

	Parameters

	value – The string to convert to a path.

earwax.conversation_level module

Provides the CallResponseLevel class, and various supporting classes.

	
class earwax.conversation_level.CallResponseSettings

	Bases: earwax.config.Config

Configuration for a conversation session.

	
output_audio = ConfigValue(value=True, name='Play audio', type_=<class 'bool'>, value_converters=None, default=True, dump_func=None, load_func=None)

	

	
output_braille = ConfigValue(value=True, name='Output in braille', type_=<class 'bool'>, value_converters=None, default=True, dump_func=None, load_func=None)

	

	
output_speech = ConfigValue(value=True, name='Speak text', type_=<class 'bool'>, value_converters=None, default=True, dump_func=None, load_func=None)

	

	
class earwax.conversation_level.ConversationBase(id: str = NOTHING, text: Optional[str] = None, sound: Optional[str] = None)

	Bases: earwax.mixins.DumpLoadMixin

A base for conversations and finishers.

	
class earwax.conversation_level.ConversationEditor(game: Game, tree: earwax.conversation_level.ConversationTree = NOTHING, filename: pathlib.Path = NOTHING, items: List[Union[earwax.conversation_level.ConversationSection, earwax.conversation_level.Finisher]] = NOTHING, stack: List[earwax.conversation_level.ItemsStack] = NOTHING, at_home: bool = False, current_position: int = 0)

	Bases: earwax.level.Level

Used for editing a conversation tree.

	
collapse_item() → None

	Move up to the previous level of items.

	
current_item

	Get the currently focused entry.

	
expand_item() → None

	Move into the next level of items.

	
finisher_menu() → Optional[Generator[None, None, None]]

	Show a menu of finishers for the current item.

	
home(silent: bool = False) → None

	Populate the items list with all items.

	Parameters

	silent – If True, the selected item will not be output.

	
new_finisher() → None

	Create a new finisher.

	
new_section() → None

	Create a new conversation section.

	
next_item() → None

	Move down in the items list.

	
output_item() → None

	Output the current item.

	
previous_item() → None

	Move up in the current list.

	
response_menu() → Optional[Generator[None, None, None]]

	Show a response menu for the current item.

	
save() → None

	Save this tree.

	
set_initial_id() → None

	Set the initial conversation section.

	
set_sound() → Optional[Generator[None, None, None]]

	Set the sound for the current item.

	
set_text() → Optional[Generator[None, None, None]]

	Set the text for the currently focused item.

	
sort_items() → None

	Sort items by ID.

	
switch_item(direction: int) → None

	Switch items.

	
class earwax.conversation_level.ConversationSection(id: str = NOTHING, text: Optional[str] = None, sound: Optional[str] = None, before_wait: Union[float, Tuple[float, float], None] = None, after_wait: Union[float, Tuple[float, float], None] = None, response_ids: List[str] = NOTHING, finisher_ids: List[str] = NOTHING)

	Bases: earwax.conversation_level.ConversationBase

A part of a conversation.

	
class earwax.conversation_level.ConversationTree(sections: Dict[str, earwax.conversation_level.ConversationSection] = NOTHING, finishers: Dict[str, earwax.conversation_level.Finisher] = NOTHING, initial_section_id: Optional[str] = None, winning_section_ids: List[str] = NOTHING)

	Bases: earwax.mixins.DumpLoadMixin

A structure for holding conversation sections and finishers.

	
class earwax.conversation_level.Finisher(id: str = NOTHING, text: Optional[str] = None, sound: Optional[str] = None)

	Bases: earwax.conversation_level.ConversationBase

Do something after a response has been selected.

	
class earwax.conversation_level.ItemsStack(items: List[Union[earwax.conversation_level.ConversationSection, earwax.conversation_level.Finisher]], position: int)

	Bases: object

Store items.

earwax.credit module

Provides the Credit class.

	
class earwax.credit.Credit(name: str, url: str, sound: Optional[pathlib.Path] = None, loop: bool = True)

	Bases: object

A credit in a game.

	Variables

	
	name – The name of the person or company who is being
credited.

This value will be shown in a menu generated by
earwax.Menu.from_credits().

	url – The URL to open when this credit is selected.

	sound – An optional sound to play while this credit is
shown.

	loop – Whether ot not to loop
sound.

	
classmethod earwax_credit() → earwax.credit.Credit

	Get an earwax credit.

earwax.dialogue_tree module

Provides the DialogueLine and DialogueTree classes.

	
class earwax.dialogue_tree.DialogueLine(parent: DialogueTree, text: Optional[str] = None, sound: Optional[pathlib.Path] = None, can_show: Optional[Callable[[], bool]] = None, on_activate: Optional[Callable[[], bool]] = None, responses: List[DialogueLine] = NOTHING)

	Bases: object

A line of dialogue.

	Parameters

	
	parent – The dialogue tree that this line of
dialogue belongs to.

	text – The text that is shown as part of this
dialogue line.

	sound – A portion of recorded dialogue.

	can_show – A callable which will determine
whether or not this line is visible in the conversation.

If it returns True, this line will be shown in the list.

	on_activate – A callable which will be called
when this line is selected from the list of lines.

If it returns True, the conversation can continue.

	responses – A list of responses to this line.

	
class earwax.dialogue_tree.DialogueTree(tracks: List[earwax.track.Track] = NOTHING)

	Bases: object

A dialogue tree object.

	Variables

	
	children – The top-level dialogue lines for this
instance.

	tracks – A list of tracks to play while this
dialogue tree is in focus.

	
get_children() → List[earwax.dialogue_tree.DialogueLine]

	Get a list of all the children who can be shown currently.

This method returns a list of those children for whom
child.can_show() is True.

earwax.die module

Provides the Die class.

	
class earwax.die.Die(sides: int = 6)

	Bases: earwax.mixins.RegisterEventMixin

A single dice.

	Variables

	sides – The number of sides this die has.

	
on_roll(value: int) → None

	Code to be run when a die is rolled.

An event which is dispatched by roll() method.

	Parameters

	value – The number that has been rolled.

	
roll() → int

	Roll a die.

Returns a number between 1, and self.size.

earwax.editor module

Provides the Editor class.

	
class earwax.editor.Editor(game: Game, dismissible: bool = True, text: str = '', cursor_position: Optional[int] = None, vertical_position: Optional[int] = None, validator: Optional[earwax.editor.TextValidator] = None)

	Bases: earwax.level.Level, earwax.mixins.DismissibleMixin

A basic text editor.

By default, the enter key dispatches the on_submit event, with the
contents of earwax.Editor.text.

Below is an example of how to use this class:

e: Editor = Editor(game)

@e.event
def on_submit(text: str) -> None:
 # Do something with text...

game.push_level(e)

	Variables

	
	text – The text which can be edited by this object.

	cursor_position – The position of the cursor.

	vertical_position – The position in the alphabet of the
hat.

	validator – Used to validate the text.

The text will be validated before the
on_submit() event is dispatched.

	
beginning_of_line() → None

	Move to the start of the current line.

By default, this method is called when the home key is pressed.

	
clear() → None

	Clear this editor.

By default, this method is called when control + u is pressed.

	
copy() → None

	Copy the contents of this editor to the clipboard.

	
cut() → None

	Cut the contents of this editor to the clipboard.

	
do_delete() → None

	Perform a forward delete.

Used by motion_delete(), as well as the vertical
hat movement methods.

	
echo(text: str) → None

	Speak the provided text.

	Parameters

	text – The text to speak, using tts.speak.

	
echo_current_character() → None

	Echo the current character.

Used when moving through the text.

	
end_of_line() → None

	Move to the end of the line.

By default, this method is called when the end key is pressed.

	
hat_down() → None

	Move down through the list of letters.

	
hat_up() → None

	Change the current letter to the previous one in the configured alphabet.

If the cursor is at the end of the line, moving up will select a “save”
button.

If the cursor is not at the end of the line, moving up will select a
“delete” button.

	
insert_text(text: str) → None

	Insert text at the current cursor position.

	
motion_backspace() → None

	Delete the previous character.

This will do nothing if the cursor is at the beginning of the line, or
there is no text to delete.

	
motion_delete() → None

	Delete the character under the cursor.

Nothing will happen if we are at the end of the line (or there is no
text, which will amount to the same thing).

	
motion_down() → None

	Arrow down.

Since we’re not bothering with multiline text fields at this stage,
just move the cursor to the end of the line, and read the whole
thing.

By default, this method is called when the down arrow key is pressed.

	
motion_left() → None

	Move left in the editor.

By default, this method is called when the left arrow key is
pressed.

	
motion_right() → None

	Move right in the editor.

By default, this method is called when the right arrow key is
pressed.

	
motion_up() → None

	Arrow up.

Since we’re not bothering with multiline text fields at this stage,
just move the cursor to the start of the line, and read the whole
thing.

By default, this method is called when the up arrow key is pressed.

	
on_submit(text: str) → None

	Code to be run when this editor is submitted.

The event which is dispatched if the enter key is pressed.

	Parameters

	text – The contents of self.text.

	
on_text(text: str) → None

	Text has been entered.

If the cursor is at the end of the line, append the text. Otherwise,
insert it.

	Parameters

	text – The text that has been entered.

	
paste() → None

	Paste the contents of the clipboard into this editor.

	
set_cursor_position(pos: Optional[int]) → None

	Set the cursor position within text.

If pos is None, then the cursor will be at the end of the line.
Otherwise, pos should be an integer between 0 and len(self.text)
- 1.

	Parameters

	pos – The new cursor position.

	
submit() → None

	Submit self.text.

Dispatch the on_submit event with the contents
of self.text after checking the
validator is happy.

By default, this method is called when the enter key is pressed.

	
class earwax.editor.TextValidator(func: Callable[[str], Optional[str]])

	Bases: object

A class to validate the text entered into editors.

This class takes a function which must either return None to indicate
success, or a message which will be output to the player.

	Parameters

	func – The function to validate the text
with.

	
classmethod float(message: str = 'Invalid decimal: {}.') → T

	Return a validator which ensures text can be cast to a float.

	Parameters

	message – The message which will be shown if an invalid float is
given.

	
classmethod int(message: str = 'Invalid number: {}.', base: int = 10) → T

	Return a validator which ensures text can be cast to an integer.

	Parameters

	
	message – The message which will be returned if the cast fails.

	base – The base for to use when casting the text.

	
classmethod not_empty(message: str = 'You must supply a value.') → T

	Make a validator that does not except an empty string.

	Parameters

	message – The message which will be shown if an empty string is
provided.

	
classmethod regexp(pattern: re.Pattern, message: str = 'Invalid value: {}.') → T

	Make a regexp validator.

	Parameters

	
	pattern – The regular expression which the text in the editor
must match.

	message – The message which will be returned if no match is
found.

earwax.event_matcher module

Provides the EventMatcher class.

	
class earwax.event_matcher.EventMatcher(game: Game, name: str)

	Bases: object

Matches events for Game instances.

An object to call events on a Game instance’s
level property.

Used to prevent us writing loads of events out.

	Variables

	
	game – The game this matcher is bound to.

	name – The name of the event this matcher uses.

	
dispatch(*args, **kwargs) → None

	Dispatch this event.

Find the appropriate event on game.level, if game.level is not
None.

If self.game.level doesn’t have an event of
the proper name, search instead on self.game.

	Parameters

	
	args – The positional arguments to pass to any event that is
found.

	kwargs – The keyword arguments to pass to any event that is
found.

earwax.game module

Provides the Game class.

	
class earwax.game.Game(name: str = 'earwax.game', audio_context: Optional[object] = NOTHING, buffer_cache: earwax.sound.BufferCache = NOTHING, interface_sound_manager: earwax.sound.SoundManager = NOTHING, music_sound_manager: Optional[earwax.sound.SoundManager] = NOTHING, ambiance_sound_manager: Optional[earwax.sound.SoundManager] = NOTHING, thread_pool: concurrent.futures._base.Executor = NOTHING, credits: List[earwax.credit.Credit] = NOTHING, logger: logging.Logger = NOTHING)

	Bases: earwax.mixins.RegisterEventMixin

The main game object.

This object holds a reference to the game window, as well as a list of
Level instances.

In addition, references to various parts of the audio subsystem reside on
this object, namely audio_context.

Instances of the Level class can be pushed, popped, and replaced. The
entire stack can also be cleared.

Although it doesn’t matter in what order you create objects, a Game
instance is necessary for Level instances - and subclasses
thereof - to be useful.

	Variables

	
	window – The pyglet window used to display the game.

	config – The configuration object used by this game.

	name – The name of this game. Used by
get_settings_path().

	audio_context – The Synthizer context to route audio
through.

	interface_sound_manager – A sound manager for playing
interface sounds.

	music_sound_manager – A sound manager for playing music.

	ambiance_sound_manager – A sound manager for playing
ambiances.

	levels – All the pushed earwax.Level instances.

	triggered_actions – The currently triggered
earwax.Action instances.

	key_release_generators – The earwax.Action
instances which returned generators, and need to do something on key
release.

	mouse_release_generators – The earwax.Action
instances which returned generators, and need to do something on mouse
release.

	joybutton_release_generators – The earwax.Action
instances which returned generators, and need to do something on
joystick button release.

	event_matchers – The earwax.EventMatcher
instances used by this object.

To take advantage of the pyglet events system, subclass
earwax.Game, or earwax.Level, and include events from
pyglet.window.Window [https://pyglet.readthedocs.io/en/latest/modules/window.html].

	joysticks – The list of joysticks that have been opened
by this instance.

	thread_pool – An instance of ThreadPoolExecutor to
use for threaded operations.

	tasks – A list of earwax.Task instances.

You can add tasks with the register_task()
decorator, and remove them again with the
remove_task() method.

	
adjust_volume(amount: float) → float

	Adjust the master volume.

	Parameters

	amount – The amount to add to the current volume.

	
after_run() → None

	Run code before the game exits.

This event is dispatched after the main game loop has ended.

By this point, synthizer has been shutdown, and there is nothing else
to be done.

	
before_run() → None

	Do stuff before starting the main event loop.

This event is used by the run method, before any initial level is
pushed, or any of the sound managers are created.

This is the event to use if you’re planning to load configuration.

By this point, default events have been decorated, such as
on_key_press and on_text. Also, we are inside a synthizer.initialized
context manager, so feel free to play sounds, and use
self.audio_context.

	
cancel(message: str = 'Cancelled', level: Optional[earwax.level.Level] = None) → None

	Cancel with an optional message.

All this method does is output the given message, and either pop the
most recent level, or reveal the given level.

	Parameters

	
	message – The message to output.

	level – The level to reveal.

If this value is None, then the most recent level will be
popped.

	
change_volume(amount: float) → Callable[[], None]

	Return a callable that can be used to change the master volume.

	Parameters

	amount – The amount to change the volume by.

	
clear_levels() → None

	Pop all levels.

The earwax.Level.on_pop() method will be called on every level
that is popped.

	
click_mouse(button: int, modifiers: int) → None

	Simulate a mouse click.

This method is used for testing, to simulate first pressing, then
releasing a mouse button.

	Parameters

	
	button – One of the mouse button constants from
pyglet.window.mouse [https://pythonhosted.org/pyglet/api/pyglet.window.mouse-module.html].

	modifiers – One of the modifier constants from
pyglet.window.key [https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html].

	
finalise_run() → None

	Perform the final steps of running the game.

	Dispatch the before_run() event.

	Call pyglet.app.run().

	Unload Cytolk.

	Dispatch the after_run() event.

	
get_default_buffer_cache() → earwax.sound.BufferCache

	Return the default buffer cache.

	Parameters

	instance – The game to return the buffer cache for.

	
get_default_logger() → logging.Logger

	Return a logger.

	
get_settings_path() → pathlib.Path

	Get a path to store game settings.

Uses pyglet.resource.get_settings_path to get an appropriate
settings path for this game.

	
init_sdl() → None

	Initialise SDL.

	
level

	Get the most recently added earwax.Level instance.

If the stack is empty, None will be returned.

	
on_close() → None

	Run code when closing the window.

Called when the window is closing.

This is the default event that is used by pyglet.window.Window.

By default, this method calls self.clear_levels(), to ensure any clean up code is called.

	
on_joybutton_press(joystick: pyglet.input.base.Joystick, button: int) → bool

	Handle the press of a joystick button.

This is the default handler that fires when a joystick button is
pressed.

	Parameters

	joystick – The joystick that emitted the event.

: param button: The button that was pressed.

	
on_joybutton_release(joystick: pyglet.input.base.Joystick, button: int) → bool

	Handle the release of a joystick button.

This is the default handler that fires when a joystick button is
released.

	Parameters

	joystick – The joystick that emitted the event.

: param button: The button that was pressed.

	
on_joyhat_motion(joystick: pyglet.input.base.Joystick, x: int, y: int) → bool

	Handle joyhat motions.

This is the default handler that fires when a hat is moved.

If the given position is the default position (0, 0), then any
actions started by hat motions are stopped.

	Parameters

	joystick – The joystick that emitted the event.

: param x: The left / right position of the hat.

: param y: The up / down position of the hat.

	
on_key_press(symbol: int, modifiers: int) → bool

	Handle a pressed key.

This is the default event that is used by pyglet.window.Window.

By default it iterates through self.level.actions, and searches for events that match the given
symbol and modifiers.

	Parameters

	
	symbol – One of the key constants from pyglet.window.key [https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html].

	modifiers – One of the modifier constants from pyglet.window.key [https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html].

	
on_key_release(symbol: int, modifiers: int) → bool

	Handle a released key.

This is the default event that is used by pyglet.window.Window.

	Parameters

	
	symbol – One of the key constants from pyglet.window.key [https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html].

	modifiers – One of the modifier constants from pyglet.window.key [https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html].

	
on_mouse_press(x: int, y: int, button: int, modifiers: int) → bool

	Handle a mouse button press.

This is the default event that is used by pyglet.window.Window.

By default, this method pretty much acts the same as
on_key_press(), except it checks the discovered
actions for mouse buttons, rather than symbols.

	Parameters

	
	x – The x coordinate of the mouse.

	y – The y coordinate of the mouse.

	button – One of the mouse button constants from
pyglet.window.mouse [https://pythonhosted.org/pyglet/api/pyglet.window.mouse-module.html].

	modifiers – One of the modifier constants from pyglet.window.key [https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html].

	
on_mouse_release(x: int, y: int, button: int, modifiers: int) → bool

	Handle a mouse button release.

This is the default event that is used by pyglet.window.Window.

By default, this method is pretty much the same as
on_key_release(), except that it uses the
discovered actions mouse button information.

	Parameters

	
	x – The x coordinate of the mouse.

	y – The y coordinate of the mouse.

	button – One of the mouse button constants from
pyglet.window.mouse [https://pythonhosted.org/pyglet/api/pyglet.window.mouse-module.html].

	modifiers – One of the modifier constants from pyglet.window.key [https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html].

	
open_joysticks() → None

	Open and attach events to all attached joysticks.

	
output(text: str, interrupt: bool = False) → None

	Output braille and / or speech.

The earwax configuration is used to determine what should be outputted.

	Parameters

	
	text – The text to be spoken or output to a braille display.

	interrupt – If Whether or not to silence speech before outputting
anything else.

	
poll_synthizer_events(dt: float) → None

	Poll the audio context for new synthizer events.

	Parameters

	dt – The delta provided by Pyglet.

	
pop_level() → None

	Pop the most recent earwax.Level instance from the stack.

If there is a level underneath the current one, then events will be
passed to it. Otherwise there will be an empty stack, and events won’t
get handled.

This method calls on_pop() on the popped level, and
on_reveal() on the one below it.

	
pop_levels(n: int) → None

	Pop the given number of levels.

	Parameters

	n – The number of times to call pop_level().

	
press_key(symbol: int, modifiers: int, string: Optional[str] = None, motion: Optional[int] = None) → None

	Simulate a key press.

This method is used in tests.

First presses the given key combination, then releases it.

If string and motion are not None, then on_text, and on_text_motion
events will also be fired.

	Parameters

	
	symbol – One of the key constants from pyglet.window.key [https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html].

	modifiers – One of the modifier constants from pyglet.window.key [https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html].

	string – A string to be picked up by an on_text event
handler..

	motion – A key to be picked up by an on_text_motion event
handler.

	
push_action_menu(title: str = 'Actions', **kwargs) → earwax.menus.action_menu.ActionMenu

	Push and return an action menu.

This method reduces the amount of code required to create a help menu:

@level.action(
 'Help Menu', symbol=key.SLASH, modifiers=key.MOD_SHIFT
)
def help_menu() -> None:
 game.push_action_menu()

	Parameters

	
	title – The title of the new menu.

	kwargs – The extra keyword arguments to pass to the ActionMenu
constructor.

	
push_credits_menu(title='Game Credits') → earwax.menus.menu.Menu

	Push a credits menu onto the stack.

This method reduces the amount of code needed to push a credits menu:

@level.action('Show credits', symbol=key.F1)
def show_credits() -> None:
 game.push_credits_menu()

	Parameters

	title – The title of the new menu.

	
push_level(level: earwax.level.Level) → None

	Push a level onto self.levels.

This ensures that all events will be handled by the provided level
until another level is pushed on top, or the current one is popped.

This method also dispatches the on_push() event on
the provided level.

If the old level is not None, then the on_cover event is dispatched
on the old level, with the new level as the only argument.

	Parameters

	level – The earwax.Level instance to push onto the
stack.

	
register_task(interval: Callable[[], float]) → Callable[[Callable[[float], None]], earwax.task.Task]

	Decorate a function to use as a task.

This function allows you to convert a function into a
Task instance, so you can add tasks by decoration:

@game.register_task(lambda: uniform(1.0, 5.0))
def task(dt: float) -> None:
 '''A task.'''
 print('Working: %.2f.' % dt)
task.start()

	Parameters

	interval – The function to use for the interval.

	
remove_task(task: earwax.task.Task) → None

	Stop and remove a task.

	Parameters

	task – The task to be stopped.

The task will first have its stop() method
called, then it will be removed from the tasks
list.

	
replace_level(level: earwax.level.Level) → None

	Pop the current level, then push the new one.

This method uses pop_level(), and
push_level(), so make sure you familiarise yourself
with what events will be called on each level.

	Parameters

	level – The earwax.Level instance to push onto the
stack.

	
reveal_level(Level: earwax.level.Level) → int

	Pop levels until level is revealed.

This method returned the number of levels which were popped.

	Parameters

	level – The level to reveal.

	
run(window: pyglet.window.BaseWindow, mouse_exclusive: bool = True, initial_level: Optional[earwax.level.Level] = None) → None

	Run the game.

By default, this method will perform the following actions in order:

	
	Iterate over all the found event types on pyglet.window.Window,

	and decorate them with EventMatcher instances.
This means Game and Level
subclasses can take full advantage of all event types by simply
adding methods with the correct names to their classes.

	Load cytolk.

	Initialise SDL2.

	Set the requested mouse exclusive mode on the provided window.

	call open_joysticks().

	
	If no audio_context is present, enter a

	synthizer.initialized contextmanager.

	Call the setup_run() method.

	Call the finalise_run() method.

	Parameters

	
	window – The pyglet window that will form the game’s interface.

	mouse_exclusive – The mouse exclusive setting for the window.

	initial_level – A level to push onto the stack.

	
set_volume(value: float) → None

	Set the master volume to a specific value.

	Parameters

	value – The new volume.

	
setup() → None

	Set up things needed for the game.

This event is dispatched just inside the synthizer context manager,
before the various sound managers have been created.

This event is perfect for loading configurations ETC.

	
setup_run(initial_level: Optional[earwax.level.Level]) → None

	Get ready to run the game.

This method dispatches the setup() event, and sets
up sound managers.

Finally, it pushes the initial level, if necessary.

	Parameters

	initial_level – The initial level to be pushed.

	
start_action(a: earwax.action.Action) → Optional[Generator[None, None, None]]

	Start an action.

If the action has no interval, it will be ran
straight away. Otherwise, it will be added to
self.triggered_actions, and
only ran if enough time has elapsed since the last run.

This method is used when a trigger fires - such as a mouse button or
key sequence being pressed - that triggers an action.

	Parameters

	a – The earwax.Action instance that should be started.

	
start_rumble(joystick: pyglet.input.base.Joystick, value: float, duration: int) → None

	Start a simple rumble.

	Parameters

	
	joystick – The joystick to rumble.

	value – A value from 0.0 to 1.0, which is the power of the
rumble.

	duration – The duration of the rumble in milliseconds.

	
stop() → None

	Close self.window.

If self.window is None, then :class:earwax.GameNotRunning` will
be raised.

	
stop_action(a: earwax.action.Action) → None

	Unschedule an action.

The provided action will be removed from
triggered_actions.

This method is called when the user stops doing something that
previously triggered an action, such as releasing a key or a mouse
button

	Parameters

	a – The earwax.Action instance that should be stopped.

	
stop_rumble(joystick: pyglet.input.base.Joystick) → None

	Cancel a rumble.

	Parameters

	joystick – The joystick you want to rumble.

	
exception earwax.game.GameNotRunning

	Bases: Exception

This game is not running.

earwax.game_board module

Provides the GameBoard class.

	
class earwax.game_board.GameBoard(game: Game, size: earwax.point.Point[int][int], tile_builder: Callable[[earwax.point.Point], T], coordinates: earwax.point.Point[int][int] = NOTHING)

	Bases: earwax.level.Level, typing.Generic

A useful starting point for making board games.

Tiles can be populated with the populate() method.
This method will be called as part of the default
on_push() event.

	Variables

	
	size – The size of this board.

This value will be the maximum possible coordinates on the board, with
(0, 0, 0) being the minimum.

	tile_builder – The function that is used to build
the GameBoard.

The return value of this function should be of type T.

	coordinates – The coordinates of the player on this
board.

	tiles – All the tiles generated by
populate().

	populated_points – All the points that have been
populated by populate().

	
current_tile

	Return the current tile.

Gets the tile at the current coordinates.

If no such tile is found, None is returned.

	
get_tile(p: earwax.point.Point[int][int]) → T

	Return the tile at the given point.

If there is no tile found, then NoSuchTile is raised.

	Parameters

	p – The coordinates of the desired tile.

	
move(direction: earwax.point.PointDirections, wrap: bool = False) → Callable[[], None]

	Return a callable that can be used to move the player.

For example:

board = GameBoard(...)

board.action(
 'Move left', symbol=key.LEFT
)(board.move(PointDirections.west))

	Parameters

	
	direction – The direction that this action should move the player
in.

	wrap – If True, then coordinates that are out of range will
result in wrapping around to the other side of the board..

	
on_move_fail(direction: earwax.point.PointDirections) → None

	Run code when the player fails to move.

An event that is dispatched when a player fails to move in the given
direction.

	Parameters

	direction – The direction the player tried to move in.

	
on_move_success(direction: earwax.point.PointDirections) → None

	Handle a successful move.

An event that is dispatched by move().

	Parameters

	direction – The direction the player just moved.

	
on_push() → None

	Populate the board.

	
populate() → None

	Fill the board.

	
exception earwax.game_board.NoSuchTile

	Bases: Exception

No such tile exists.

This exception is raised by earwax.GameBoard.get_tile() when no tile
is found at the given coordinates.

earwax.hat_directions module

Provides hat motions to be used as shortcuts.

earwax.input_modes module

Provides the InputModes enumeration.

	
class earwax.input_modes.InputModes

	Bases: enum.Enum

The possible input modes.

This enumeration is used to show appropriate triggers in
earwax.ActionMenu instances.

	Variables

	
	keyboard – The user is entering commands via
keyboard or mouse.

	controller – The user is using a games controller.

	
controller = 1

	

	
keyboard = 0

	

earwax.level module

Provides classes for working with levels.

	
class earwax.level.IntroLevel(game: Game, level: earwax.level.Level, sound_path: pathlib.Path, skip_after: Optional[float] = None, looping: bool = False, sound_manager: Optional[earwax.sound.SoundManager] = NOTHING, play_kwargs: Dict[str, Any] = NOTHING)

	Bases: earwax.level.Level

An introduction level.

This class represents a level that plays some audio, before optionally
replacing itself in the level stack with self.level.

If you want it to be possible to skip this level, add a trigger for the
skip() action.

	Variables

	
	level – The level that will replace this one.

	sound_path – The sound to play when this level is
pushed.

	skip_after – An optional number of seconds to wait
before skipping this level.

If this value is None, then the level will not automatically skip
itself, and you will have to provide some other means of getting past
it.

	looping – Whether or not the playing sound should
loop.

If this value is True, then skip_after
must be None, otherwise AssertionError will be raised.

	sound_manager – The sound manager to use to play
the sound.

If this value is None, then the sound will not be playing.

This value default to earwax.Game.interface_sound_manager.

	play_kwargs – Extra arguments to pass to the
play() method of the
sound_manager.

When the on_push() event is dispatched, an
error will be raised if this dictionary contains a looping key, as
2 looping arguments would be passed to
self.sound_manager.play_path.

	sound – The sound object which represents the
playing sound.

If this value is None, then the sound will not be playing.

	
get_default_sound_manager() → Optional[earwax.sound.SoundManager]

	Return a suitable sound manager.

	
on_pop() → None

	Destroy any created sound().

	
on_push() → None

	Run code when this level has been pushed.

Starts playing self.sound_path,
and optionally schedules an automatic skip.

	
skip() → Generator[None, None, None]

	Skip this level.

Replaces this level in the level stack with self.level.

	
class earwax.level.Level(game: Game)

	Bases: earwax.mixins.RegisterEventMixin, earwax.action_map.ActionMap

A level in a Game instance.

An object that contains event handlers. Can be pushed and pulled from
within a Game instance.

While the Game object is the centre of a game, Level
instances are where the magic happens.

If the included action() and
motion() decorators aren’t enough for your needs, and
you want to harness the full power of the Pyglet event system, simply
subclass earwax.Level, and include the requisite events. The
underlying Game object will do all the heavy lifting for
you, by way of the EventMatcher framework.

	Variables

	
	game – The game this level is bound to.

	actions – A list of actions which can be called on this
object. To define more, use the action() decorator.

	motions – The defined motion events. To define more, use
the motion() decorator.

	ambiances – The ambiances for this level.

	tracks – The tracks (musical or otherwise) that play
while this level is top of the stack.

	
motion(motion: int) → Callable[[MotionFunctionType], MotionFunctionType]

	Add a handler to motions.

For example:

@level.motion(key.MOTION_LEFT)
def move_left():
 # ...

This is the method used by earwax.Editor, to make text
editable, and earwax.Menu, to make menus searchable.

	Parameters

	motion – One of the motion constants from pyglet.window.key [https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html].

	
on_cover(level: earwax.level.Level) → None

	Code to run when this level has been covered by a new one.

	
on_pop() → None

	Run code when this level is popped.

This event is called when a level has been popped from the level
stack of a game.

	
on_push() → None

	Run code when this level is pushed.

This event is called when a level has been pushed onto the level
stack of a game.

	
on_reveal() → None

	Code to be run when this level is exposed.

This event is called when the level above this one in the stack has
been popped, thus revealing this level.

	
on_text_motion(motion: int) → None

	Call the appropriate motion.

The motions dictionary will be consulted, and if
the provided motion is found, then that function will be called.

This is the default event that is used by pyglet.window.Window.

	Parameters

	motion – One of the motion constants from pyglet.window.key [https://pythonhosted.org/pyglet/api/pyglet.window.key-module.html].

	
start_ambiances() → None

	Start all the ambiances on this instance.

	
start_tracks() → None

	Start all the tracks on this instance.

	
stop_ambiances() → None

	Stop all the ambiances on this instance.

	
stop_tracks() → None

	Stop all the tracks on this instance.

earwax.mixins module

Provides various mixin classes for used with other objects.

	
class earwax.mixins.DismissibleMixin(dismissible: bool = True)

	Bases: object

Make any Level subclass dismissible.

	Variables

	dismissible – Whether or not it should
be possible to dismiss this level.

	
dismiss() → None

	Dismiss the currently active level.

By default, when used by earwax.Menu and
earwax.Editor, this method is called when the escape key is
pressed, and only if self.dismissible evaluates to True.

The default implementation simply calls pop_level()
on the attached earwax.Game instance, and announces the
cancellation.

	
class earwax.mixins.DumpLoadMixin

	Bases: object

A mixin that allows any object to be dumped to and loaded from a dictionary.

It is worth noting that only instance variables which have type hints (and
thus end up in the __annotations__ dictionary) will be dumped and
loaded.

Also, any instance variables whose name starts with an underscore (_) will
be ignored.

To dump an instance, use the dump()
method, and to load, use the load()
constructor.

The __allowed_basic_types__ list holds all the types which will be
dumped without any modification.

By default, the only collection types that are allowed are list, and
dict.

If you wish to exclude attributes from being dumped or loaded, create a
__excluded_attributes__ list, and add all names there.

	
dump() → Dict[str, Any]

	Dump this instance as a dictionary.

	
classmethod from_file(f: TextIO, *args) → Any

	Return an instance from a file object.

	Parameters

	
	f – A file which has already been opened.

	args – Extra positional arguments to pass to the load
constructor.

	
classmethod from_filename(filename: pathlib.Path, *args) → Any

	Load an instance from a filename.

	Parameters

	filename – The path to load from.

	
get_dump_value(type_: Type[CT_co], value: Any) → Any

	Get a value for dumping.

	Parameters

	value – The value that is present on the instance.

	
classmethod get_load_value(expected_type: Type[CT_co], value: Any) → Any

	Return a loaded value.

In the event that the dumped value represents a instance of
earwax.mixins.DumpLoadValue, the dictionary must have been
returned by earwax.mixins.DumpLoadMixin.dump(), so it contains
both the dumped value, and the type annotation.

This prevents errors with Union types representing multiple subclasses.

If the type of the provided value is found in the
__allowed_basic_types__ list, it
will be returned as-is. This is also true if the value is an
enumeration value.

If the type of the provided value is list, then each element will
be passed through this method and a list of the loaded values returned.

If the type of the value is dict, one of two things will occur:

	
	If expected_type is also a dict, then the given value will have

	its keys and values loaded with this function.

	
	If expected_type is also a subclass of

	earwax.mixins.DumpLoadMixin, then it will be loaded with
that class’s load method.

	If neither of these things are true, RuntimeError will be raised.

	Parameters

	
	expected_type – The type from the __annotations__ dictionary.

	value – The raw value to load.

	
classmethod load(data: Dict[str, Any], *args) → Any

	Load and return an instance from the provided data.

It is worth noting that only keys that are also found in the
__attrs_attrs__ list, or __annotations__ dictionary, and not
found in the __excluded_attribute_names__ list will be loaded. All
others are ignored.

	Parameters

	
	data – The data to load from.

	args – Extra positional arguments to pass to the constructor.

	
save(filename: pathlib.Path) → None

	Write this object to the provided filename.

	Parameters

	filename – The path to the file to dump to.

	
class earwax.mixins.RegisterEventMixin

	Bases: pyglet.event.EventDispatcher

Allow registering and binding events in one function.

	
register_and_bind(func: EventType) → EventType

	Register and bind a new event.

This is the same as:

level.register_event_type('f')

@level.event
def f() -> None:
 pass

	Parameters

	func – The function whose name will be registered, and which will
be bound to this instance.

	
register_event(func: EventType) → str

	Register an event type from a function.

This function uses func.__name__ to register an event type,
eliminating possible typos in event names.

	Parameters

	func – The function whose name will be used.

	
class earwax.mixins.TitleMixin(title: Union[str, TitleFunction])

	Bases: object

Add a title to any Level subclass.

	Variables

	title – The title of this instance.

If this value is a callable, it should return a string which will be
used as the title.

	
get_title() → str

	Return the proper title of this object.

If self.title is a callable,
its return value will be returned.

earwax.networking module

Provides classes for networking.

	
exception earwax.networking.AlreadyConnected

	Bases: earwax.networking.NetworkingConnectionError

Already connected.

Attempted to call connect() on an already
connected NetworkConnection instance.

	
exception earwax.networking.AlreadyConnecting

	Bases: earwax.networking.NetworkingConnectionError

Already connecting.

An attempt was made to call connect() on an
NetworkConnection instance which is already attempting to
connect.

	
class earwax.networking.ConnectionStates

	Bases: enum.Enum

Various states that NetworkConnection classes can be in.

	Variables

	
	not_connected – The connection’s
connect() method has not yet been
called.

	connecting – The connection is still being
established.

	connected – A connection has been
established.

	disconnected – This connection is no longer
connected (but was at some point).

	error – There was an error establishing a
connection.

	
connected = 2

	

	
connecting = 1

	

	
disconnected = 3

	

	
error = 4

	

	
not_connected = 0

	

	
class earwax.networking.NetworkConnection

	Bases: earwax.mixins.RegisterEventMixin

Represents a single outbound connection.

You can read data by providing an event handler for
on_data(), and write data with the
send() method.

	Variables

	
	socket – The raw socket this instance uses
for communication.

	state – The state this connection is in.

	
close() → None

	Close this connection.

Disconnect self.socket, and
call shutdown() to clean up..

	
connect(hostname: str, port: int) → None

	Open a new connection.

Connect self.socket to the
provided hostname and port.

	Parameters

	
	hostname – The hostname to connect to.

	port – The port to connect on.

	
on_connect() → None

	Deal with the connection being opened.

This event is dispatched when text is first received from
self.socket, since I’ve not
found a better way to know when the socket is properly open.

	
on_data(data: bytes) → None

	Handle incoming data.

An event which is dispatched whenever data is received from
self.socket.

	
on_disconnect() → None

	Handle the connection closing.

Dispatched when self.socket
has disconnected.

A socket disconnect is defined by the socket in question receiving an
empty string.

	
on_error(e: Exception) → None

	Handle a connection error.

This event is dispatched when there is an error establishing a
connection.

	Parameters

	e – The exception that was raised.

	
poll(dt: float) → None

	Check if any data has been received.

Poll self.socket for anything
that has been received since the last time this function ran.

This function will be scheduled by
connect(), and unscheduled by
shutdown(), when no more data is
received from the socket.

If this connection is not connected yet (I.E.: you called this function
yourself), then earwax.NotConnectedYet will be raised.

	
send(data: bytes) → None

	Send some data over this connection.

Sends some data to self.socket.

If this object is not connected yet, then
NotConnectedYet will be raised.

	Parameters

	data – The data to send to the socket.

Must end with '\r\n'.

	
shutdown() → None

	Shutdown this server.

Unschedule self.poll, set
self.socket to None, and
reset self.state to
earwax.ConnectionStates.not_connected.

	
exception earwax.networking.NetworkingConnectionError

	Bases: Exception

Base class for connection errors.

	
exception earwax.networking.NotConnectedYet

	Bases: earwax.networking.NetworkingConnectionError

Tried to send data on a connection which is not yet connected.

earwax.point module

Provides the Point class.

	
class earwax.point.Point(x: T, y: T, z: T)

	Bases: typing.Generic

A point in 3d space.

	
angle_between(other: earwax.point.Point) → float

	Return the angle between two points.

	Parameters

	other – The other point to get the angle to.

	
coordinates

	Return self.x, self.y, and self.z as a tuple.

	
copy() → earwax.point.Point[~T][T]

	Copy this instance.

Returns a Point instance with duplicate x and y
values.

	
directions_to(other: earwax.point.Point) → earwax.point.PointDirections

	Return the direction between this point and other.

	Parameters

	other – The point to get directions to.

	
distance_between(other: earwax.point.Point) → float

	Return the distance between two points.

	Parameters

	other – The point to measure the distance to.

	
floor() → earwax.point.Point[int][int]

	Return a version of this object with both coordinates floored.

	
in_direction(angle: float, distance: float = 1.0) → earwax.point.Point[float][float]

	Return the coordinates in the given direction.

	Parameters

	
	angle – The direction of travel.

	distance – The distance to travel.

	
classmethod origin() → earwax.point.Point[int][int]

	Return Point(0, 0, 0).

	
classmethod random(a: earwax.point.Point[int][int], b: earwax.point.Point[int][int]) → PointType

	Return a random point between a, and b.

	Parameters

	
	a – The first point.

	b – The second point.

	
class earwax.point.PointDirections

	Bases: enum.Enum

Point directions enumeration.

Most of the possible directions between two Point
instances.

There are no vertical directions defined, although they would be easy to
include.

	
east = 3

	

	
here = 0

	

	
north = 1

	

	
northeast = 2

	

	
northwest = 8

	

	
south = 5

	

	
southeast = 4

	

	
southwest = 6

	

	
west = 7

	

earwax.reverb module

Reverb module.

	
class earwax.reverb.Reverb(gain: float = 1.0, late_reflections_delay: float = 0.01, late_reflections_diffusion: float = 1.0, late_reflections_hf_reference: float = 500.0, late_reflections_hf_rolloff: float = 0.5, late_reflections_lf_reference: float = 200.0, late_reflections_lf_rolloff: float = 1.0, late_reflections_modulation_depth: float = 0.01, late_reflections_modulation_frequency: float = 0.5, mean_free_path: float = 0.02, t60: float = 1.0)

	Bases: object

A reverb preset.

This class can be used to make reverb presets, which you can then upgrade
to full reverbs by way of the make_reverb() method.

	
make_reverb(context: object) → object

	Return a synthizer reverb built from this object.

All the settings contained by this object will be present on the new
reverb.

	Parameters

	context – The synthizer context to use.

earwax.rumble_effects module

Provides various rumble effect classes.

Please note:

When we talk about a rumble value, we mean a value from 0.0 (nothing),
to 1.0 (full on).

In reality, values on the lower end can barely be felt with some controllers.

	
class earwax.rumble_effects.RumbleEffect(start_value: float, increase_interval: float, increase_value: float, peak_duration: float, peak_value: float, decrease_interval: float, decrease_value: float, end_value: float)

	Bases: object

A rumble effect.

Instances of this class create rumble “waves”, with a start, a climb in
effect to an eventual peak, then, after some time at the peak, a gradual
drop back to stillness.

For example, you could have an effect that started at 0.5 (half power),
then climbed in increments of 0.1 every 10th of a second to a peak value of
1.0 (full power), then stayed there for 1 second, before reducing back down
to 0.7 (70% power), with 0.1 decrements every 0.2 seconds.

The code for this effect would be:

effect: RumbleEffect = RumbleEffect(
 0.5, # start_value
 0.1, # increase_interval
 0.1, # increase_value
 1., # peak_duration
 1.0, # peak_value
 0.2, # decrease_interval
 0.1, # decrease_value
 0.7, # end_value
)

The start() method returns an instance of
StaggeredPromise. This gives you the ability to save your
effect, then use it at will:

effect: RumbleEffect = RumbleEffect(
 0.2, # start_value
 0.3, # increase_interval
 0.1, # increase_value
 1.5, # peak_duration
 1.0, # peak_value
 0.3, # decrease_interval
 0.1, # decrease_value
 0.1, # end_value
)
...
promise: StaggeredPromise = effect.start(game, 0)
promise.run()

	Variables

	
	start_value – The initial rumble value.

	increase_interval – How many seconds should
elapse between each increase.

	increase_value – How much should be added to the
rumble value each increase.

	peak_duration – How many seconds the
peak_value rumble should be felt.

	peak_value – The highest rumble value this effect
will achieve.

	decrease_interval – The number of seconds between
decreases.

	decrease_value – How much should be subtracted
from the rumble value each decrease.

	end_value – The last value that will be felt.

	
start(game: Game, joystick: pyglet.input.base.Joystick) → earwax.promises.staggered_promise.StaggeredPromise

	Start this effect.

	Parameters

	
	game – The game which will provide the
start_rumble(), and
stop_rumble() methods.

	joystick – The joystick to rumble.

	
class earwax.rumble_effects.RumbleSequence(lines: List[earwax.rumble_effects.RumbleSequenceLine])

	Bases: object

A sequence of rumbles.

	Variables

	lines – A list of rumble lines that make up
effect.

	
start(game: Game, joystick: pyglet.input.base.Joystick) → earwax.promises.staggered_promise.StaggeredPromise

	Start this effect.

	Parameters

	
	game – The game which will provide the
start_rumble(), and
stop_rumble() methods.

	joystick – The joystick to rumble.

	
class earwax.rumble_effects.RumbleSequenceLine(power: float, duration: int, after: Optional[float])

	Bases: object

A line of rumble.

This class should be used in conjunction with the
RumbleSequence class.

	Variables

	
	power – The power of the rumble.

	duration – The duration of the rumble.

	after – The time to wait before proceeding
to the next line.

If this value is None, then no time will elapse.

Set this value to None for the last line in the sequence, to avoid
the promise suspending unnecessarily.

earwax.sdl module

Provides function for working with sdl2.

	
exception earwax.sdl.SdlError

	Bases: Exception

An error in SDL.

	
earwax.sdl.maybe_raise(value: int) → None

	Possibly raise SdlError.

	Parameters

	value – The value of an sdl function.

If this value is -1, then an error will be raised.

	
earwax.sdl.sdl_raise() → None

	Raise the most recent SDL error.

earwax.sound module

Provides sound-related functions and classes.

	
exception earwax.sound.AlreadyDestroyed

	Bases: earwax.sound.SoundError

This sound has already been destroyed.

	
class earwax.sound.BufferCache(max_size: int)

	Bases: object

A cache for buffers.

	Variables

	
	max_size – The maximum size (in bytes) the cache
will be allowed to grow before pruning.

For reference, 1 KB is 1024, 1 MB is 1024 ** 2, and 1 GB is
1024 ** 3.

	buffer_uris – The URIs of the buffers that are
loaded. Least recently used first.

	buffers – The loaded buffers.

	current_size – The current size of the cache.

	
destroy_all() → None

	Destroy all the buffers cached by this instance.

	
get_buffer(protocol: str, path: str) → object

	Load and return a Buffer instance.

Buffers are cached in the buffers
dictionary, so if there is already a buffer with the given protocol and
path, it will be returned. Otherwise, a new buffer will be created, and
added to the dictionary:

cache: BufferCache = BufferCache(1024 ** 2 * 512) # 512 MB max.
assert isinstance(
 cache.get_buffer('file', 'sound.wav'), synthizer.Buffer
)
True.
Now it is cached:
assert cache.get_buffer(
 'file', 'sound.wav'
) is cache.get_buffer(
 'file', 'sound.wav'
)
True.

If getting a new buffer would grow the cache past the point of
max_size, the least recently used buffer
will be removed and destroyed.

It is not recommended that you destroy buffers yourself. Let the cache
do that for you.

At present, both arguments are passed to
synthizer.Buffer.from_stream.

	Parameters

	
	protocol – One of the protocols supported by Synthizer [https://synthizer.github.io/].

As far as I know, currently only 'file' works.

	path – The path to whatever data your buffer will contain.

	
get_size(buffer: object) → int

	Return the size of the provided buffer.

	Parameters

	buffer – The buffer to get the size of.

	
get_uri(protocol: str, path: str) → str

	Return a URI for the given protocol and path.

This meth is used by get_buffer().
:param protocol: The protocol to use.

	Parameters

	path – The path to use.

	
pop_buffer() → object

	Remove and return the least recently used buffer.

	
prune_buffers() → None

	Prune old buffers.

This function will keep going, until either there is only ` buffer
left, or current_size has shrunk to less
than max_size.

	
class earwax.sound.BufferDirectory(buffer_cache: earwax.sound.BufferCache, path: pathlib.Path, glob: Optional[str] = None, thread_pool: Optional[concurrent.futures._base.Executor] = None)

	Bases: object

An object which holds a directory of synthizer.Buffer instances.

For example:

b: BufferDirectory = BufferDirectory(
 cache, Path('sounds/weapons/cannons'), glob='*.wav'
)
Get a random cannon buffer:
print(b.random_buffer())
Get a random fully qualified path from the directory.
print(b.random_path())

You can select single buffer instances from the
buffers dictionary, or a random buffer with
the random_buffer() method.

You can select single Path instances from the
paths dictionary, or a random path with the
random_path() method.

	Variables

	
	cache – The buffer cache to use.

	path – The path to load audio files from.

	glob – The glob to use when loading files.

	buffers – A dictionary of of filename:
Buffer pairs.

	paths – A dictionary of filename: Path
pairs.

	
buffers_default() → Dict[str, object]

	Return the default value.

Populates the buffers and
paths dictionaries.

	
random_buffer() → object

	Return a random buffer.

Returns a random buffer from self.buffers.

	
random_path() → pathlib.Path

	Return a random path.

Returns a random path from self.paths.

	
exception earwax.sound.NoCache

	Bases: earwax.sound.SoundManagerError

This sound manager was created with no cache.

	
class earwax.sound.Sound(context: object, generator: object, buffer: Optional[object] = None, gain: float = 1.0, looping: bool = False, position: Union[float, earwax.point.Point, None] = None, reverb: Optional[object] = None, on_destroy: Optional[Callable[[Sound], None]] = None, on_finished: Optional[Callable[[Sound], None]] = None, on_looped: Optional[Callable[[Sound], None]] = None, keep_around: bool = NOTHING)

	Bases: object

The base class for all sounds.

	Variables

	
	context – The synthizer context to connect to.

	generator – The sound generator.

	buffer – The buffer that feeds
generator.

If this value is None, then this sound is a stream.

	gain – The gain of the new sound.

	loop – Whether or not this sound should loop.

	position – The position of this sound.

If this value is None, this sound will not be panned.

If this value is an earwax.Point value, then this sound
will be a 3d sound, and the position of its
source will be set to the coordinates of the
given point.

If this value is a number, this sound will be panned in 2d, and
the value will be a panning scalar, which should range between
-1.0 (hard left), and 1.0 (hard right).

	on_destroy – A function to be called when this sound is
destroyed.

	on_finished – A function to be called when this sound
has finished playing, and looping evaluates to
False.

The timing of this event should not be relied upon.

	on_looped – A function to be called each time this sound
loops.

The timing of this event should not be relied upon.

	keep_around – Whether or not this sound should be kept
around when it has finished playing.

If this value evaluates to True, it is the same as setting the
on_finished attribute to
destroy().

	source – The synthizer source to play through.

	
check_destroyed() → None

	Do nothing if this sound has not yet been destroyed.

If it has been destroyed, AlreadyDestroyed will be
raised.

	
connect_reverb(reverb: object) → None

	Connect a reverb to the source of this sound.

	Parameters

	reverb – The reverb object to connect.

	
destroy() → None

	Destroy this sound.

This method will destroy the attached generator
and source.

If this sound has already been destroyed, then
AlreadyDestroyed will be raised.

	
destroy_generator() → None

	Destroy the generator.

This method will leave the source intact, and
will raise AlreadyDestroyed if the generator is still
valid.

	
destroy_source() → None

	Destroy the attached source.

If the source has already been destroyed,
AlreadyDestroyed will be raised.

	
destroyed

	Return whether or not this sound has been destroyed.

	
disconnect_reverb() → None

	Disconnect the connected reverb object.

	
classmethod from_path(context: object, buffer_cache: earwax.sound.BufferCache, path: pathlib.Path, **kwargs) → earwax.sound.Sound

	Create a sound that plays the given path.

	Parameters

	
	context – The synthizer context to use.

	cache – The buffer cache to load buffers from.

	path – The path to play.

If the given path is a directory, then a random file from that
directory will be chosen.

	Parm kwargs

	Extra keyword arguments to pass to the
Sound constructor.

	
classmethod from_stream(context: object, protocol: str, path: str, **kwargs) → earwax.sound.Sound

	Create a sound that streams from the given arguments.

	Parameters

	
	context – The synthizer context to use.

	protocol – The protocol argument for
synthizer.StreamingGenerator.

	path – The path parameter for synthizer.StreamingGenerator.

	
is_stream

	Return True if this sound is being streamed.

To determine whether or not a sound is being streamed, we check if
self.buffer is None.

	
pause() → None

	Pause this sound.

	
paused

	Return whether or not this sound is paused.

	
play() → None

	Resumes this sound after a call to pause().

	
reset_source() → object

	Return an appropriate source.

	
restart() → None

	Start this sound playing from the beginning.

	
set_gain(gain: float) → None

	Change the gain of this sound.

	Parameters

	gain – The new gain value.

	
set_looping(looping: bool) → None

	Set whether or not this sound should loop.

	Parameters

	looping – Whether or not to loop.

	
set_position(position: Union[float, earwax.point.Point, None]) → None

	Change the position of this sound.

If the provided position is of a different type than the current
one, then the underlying
source object will need to changee. This will
probably cause audio stuttering.

	Parameters

	position – The new position.

	
exception earwax.sound.SoundError

	Bases: Exception

The base exception for all sounds exceptions.

	
class earwax.sound.SoundManager(context: object, buffer_cache: Optional[earwax.sound.BufferCache] = NOTHING, name: str = 'Untitled sound manager', default_gain: float = 1.0, default_looping: bool = False, default_position: Union[float, earwax.point.Point, None] = None, default_reverb: Optional[object] = None)

	Bases: object

An object to hold sounds.

	Variables

	
	context – The synthizer context to use.

	cache – The buffer cache to get buffers from.

	name – An optional name to set this manager aside
from other sound managers when debugging.

	default_gain – The default
gain attribute for sounds created by this
manager.

	default_looping – The default
looping attribute for sounds created by this
manager.

	default_position – The default
position attribute for sounds created by this
manager.

	default_reverb – The default
reverb attribute for sounds created by this
manager.

	sounds – A list of sounds that are playing.

	
destroy_all() → None

	Destroy all the sounds associated with this manager.

	
play_path(path: pathlib.Path, **kwargs) → earwax.sound.Sound

	Play a sound from a path.

The resulting sound will be added to
sounds and returned.

	Parameters

	
	path – The path to play.

	kwargs – Extra keyword arguments to pass to the constructor of
earwax.Sound.

This value will be updated by the
update_kwargs() method.

	
play_stream(protocol: str, path: str, **kwargs) → earwax.sound.Sound

	Stream a sound.

The resulting sound will be added to
sounds and returned.

For full descriptions of the protocol, and path arguments,
check the synthizer documentation for StreamingGenerator.

	Parameters

	
	protocol – The protocol to use.

	path – The path to use.

	kwargs – Extra keyword arguments to pass to the constructor of
the earwax.Sound class.

This value will be updated by the
update_kwargs() method.

	
register_sound(sound: earwax.sound.Sound) → None

	Register a sound with this instance.

	Parameters

	sound – The sound to register.

	
remove_sound(sound: earwax.sound.Sound) → None

	Remove a sound from the sounds list.

	Parameters

	sound – The sound that will be removed

	
update_kwargs(kwargs: Dict[str, Any]) → None

	Update the passed kwargs with the defaults from this manager.

	Parameters

	kwargs – The dictionary of keyword arguments to update.

The setdefault method will be used with each of the default
values from this object..

	
exception earwax.sound.SoundManagerError

	Bases: Exception

The base class for all sound manager errors.

earwax.speech module

Provides the tts object.

You can use this object to output speech through the currently active screen
reader:

from earwax import tts
tts.output('Hello, Earwax.')
tts.speak('Hello, speech.')
tts.braille('Hello, braille.')

NOTE: Since version 2020-10-11, Earwax uses Cytolk [https://pypi.org/project/cytolk/] for its TTS needs.

In addition to this change, there is now an extra speech
<earwax.EarwaxConfig.speech configuration section, which can be set to make
the output() method behave how you’d like.

earwax.task module

Provides the Task class.

	
class earwax.task.Task(interval: Callable[[], float], func: Callable[[float], None])

	Bases: object

A repeating task.

This class can be used to perform a task at irregular intervals.

By using a function as the interval, you can make tasks more random.

	Parameters

	
	interval – The function to determine the interval
between task runs.

	func – The function to run as the task.

	running – Whether or not a task is running.

	
start(immediately: bool = False) → None

	Start this task.

Schedules func to run after whatever interval is
returned by interval.

Every time it runs, it will be rescheduled, until
stop() is called.

	Parameters

	immediately – If True, then self.func will run as soon as it has been scheduled.

	
stop() → None

	Stop this task from running.

earwax.track module

Provides the Track class.

	
class earwax.track.Track(protocol: str, path: str, track_type: earwax.track.TrackTypes)

	Bases: object

A looping sound or piece of music.

A track that plays while a earwax.Level object is top of the
levels stack.

	Variables

	
	protocol – The protocol argument to pass to
synthizer.StreamingGenerator``.

	path – The path argument to pass to
synthizer.StreamingGenerator.

	track_type – The type of this track.

This value determines which sound manager an instance will be connected
to.

	sound – The currently playing sound instance.

This value is initialised as part of the play()
method.

	
classmethod from_path(path: pathlib.Path, type: earwax.track.TrackTypes) → earwax.track.Track

	Return a new instance from a path.

	Parameters

	
	path – The path to build the track from.

If this value is a directory, a random file will be selected.

	type – The type of the new track.

	
play(manager: earwax.sound.SoundManager, **kwargs) → None

	Play this track on a loop.

	Parameters

	
	manager – The sound manager to play through.

	kwargs – The extra keyword arguments to send to the given
manager’s play_stream() method.

	
stop() → None

	Stop this track playing.

	
class earwax.track.TrackTypes

	Bases: enum.Enum

The type of a Track instance.

	Variables

	
	ambiance – An ambiance which will never moved, such
as the background sound for a map.

This type should not be confused with the earwax.Ambiance
class, which describes an ambiance which can be moved around the sound
field.

	music – A piece of background music.

	
ambiance = 0

	

	
music = 1

	

earwax.types module

Provides various type classes used by Earwax.

earwax.utils module

Provides various utility functions used by Earwax.

	
earwax.utils.english_list(items: List[str], empty: str = 'Nothing', sep: str = ', ', and_: str = 'and ') → str

	Given a list of strings, returns a string representing them as a list.

For example:

english_list([]) == 'Nothing'
english_list(['bananas']) == 'bananas'
english_list(['apples', 'bananas']) == 'apples, and bananas'
english_list(
 ['apples', 'bananas', 'oranges']
) == 'apples, bananas, and oranges'
english_list(['tea', 'coffee'], and_='or ') == 'tea, or coffee'

	Parameters

	
	items – The items to turn into a string.

	empty – The string to return if items is empty.

	sep – The string to separate list items with.

	and – The string to show before the last item in the list.

	
earwax.utils.format_timedelta(td: datetime.timedelta, *args, **kwargs) → str

	Given a timedelta td, return it as a human readable time.

For example:

td = timedelta(days=400, hours=2, seconds=3)
format_timedelta(
 td
) == '1 year, 1 month, 4 days, 2 hours, and 3 seconds'

Note: It is assumed that a month always contains 31 days.

	Parameters

	
	td – The time delta to work with.

	args – The extra positional arguments to pass to
english_list().

	kwargs – The extra keyword arguments to pass onto
english_list().

	
earwax.utils.nearest_square(n: int, allow_higher: bool = False) → int

	Given a number n, find the nearest square number.

If allow_higher evaluates to True, return the first square higher
than n. Otherwise, return the last square below n.

For example:

nearest_square(5) == 2 # 2 * 2 == 4
nearest_square(24, allow_higher=True) == 5 # 5 * 5 == 25
nearest_square(16) == 4
nearest_square(16, allow_higher=True) == 4

	Parameters

	n – The number whose nearest square should be returned.

	
earwax.utils.pluralise(n: int, single: str, multiple: Optional[str] = None) → str

	If n == 1, return single. Otherwise return multiple.

If multiple is None, it will become single + 's'.

For example:

pluralise(1, 'axe') == 'axe'
pluralise(2, 'axe') == 'axes'
pluralise(1, 'person', multiple='people') == 'person'
pluralise(2, 'person', multiple='people') == 'people'
pluralise(0, 'person', multiple='people') == 'people'

	Parameters

	
	n – The number of items we are dealing with.

	single – The name of the thing when there is only 1.

	multiple – The name of things when there are numbers other than 1.

	
earwax.utils.random_file(path: pathlib.Path) → pathlib.Path

	Call recursively until a file is reached.

	Parameters

	path – The path to start with.

earwax.vault_file module

Provides the VaultFile class.

	
exception earwax.vault_file.IncorrectVaultKey

	Bases: Exception

The wrong key was given, and the file cannot be decrypted.

	
class earwax.vault_file.VaultFile(entries: Dict[str, Union[bytes, List[bytes]]] = NOTHING)

	Bases: object

A class for restoring hidden files.

This class is used for loading files hidden by the earwax vault
command.

Most of the time, you want to create instances with the
from_path() constructor.

To add files, use the add_path() method.

	Variables

	entries – The files which you are saving.

The format of this dictionary is {label: data}, where data is
the contents of the file you added.

Labels don’t necessarily have to be the names of the files they
represent. They can be whatever you like.

	
add_path(p: Union[pathlib.Path, Generator[pathlib.Path, None, None]], label: Optional[str] = None) → str

	Add a file or files to this vault.

This method will add the contents of the given file to the
entries dictionary, using the given label as
the key.

	Parameters

	
	p – The path to load.

If the provided value is a generator, the resulting dictionary
value will be a list of the contents of every file in that
iterator.

If the provided value is a directory, then the resulting dictionary
value will be a list of every file (not subdirectory) in that
directory.

	label – The label that will be given to this entry.

This value will be the key in the entries
dictionary.

If None is provided, a string representation of the path will
be used.

If None is given, and the p is not a single Path
instance, RuntimeError will be raised.

	
classmethod from_path(filename: pathlib.Path, key: bytes) → earwax.vault_file.VaultFile

	Load a series of files and return a VaultFile instance.

Given a path to a data file, and the correct key, load a series of
files and return a VaultFile instance.

If the key is invalid, earwax.InvalidFaultKey will be raised.

	Parameters

	
	filename – The name of the file to load.

This must be a data file, generated by a previous call to
earwax.VaultFile.save(), not a yaml file as created by the
earwax vault new command.

	key – The decryption key for the given file.

	
save(filename: pathlib.Path, key: bytes) → None

	Save this instance’s entries to a file.

	Path filename

	The data file to save to.

The contents of this file will be encrypted with the given key, and
will be binary.

	Parameters

	key – The key to use to encrypt the data.

This key must either have been generated by
cryptography.fernet.Fernet.generate_key, or be of the correct
format.

earwax.walking_directions module

Provides the walking_directions dictionary.

earwax.yaml module

Makes the importing of yaml easier on systems that don’t support CDumper.

	
earwax.yaml.dump(data, stream=None, Dumper=<class 'yaml.dumper.Dumper'>, **kwds)

	Serialize a Python object into a YAML stream.
If stream is None, return the produced string instead.

	
earwax.yaml.load(stream, Loader=None)

	Parse the first YAML document in a stream
and produce the corresponding Python object.

	
class earwax.yaml.CDumper(stream, default_style=None, default_flow_style=False, canonical=None, indent=None, width=None, allow_unicode=None, line_break=None, encoding=None, explicit_start=None, explicit_end=None, version=None, tags=None, sort_keys=True)

	Bases: yaml._yaml.CEmitter, yaml.serializer.Serializer, yaml.representer.Representer, yaml.resolver.Resolver

	
class earwax.yaml.CLoader(stream)

	Bases: yaml._yaml.CParser, yaml.constructor.Constructor, yaml.resolver.Resolver

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 earwax	

 	
 	
 earwax.action	

 	
 	
 earwax.action_map	

 	
 	
 earwax.ambiance	

 	
 	
 earwax.cmd	

 	
 	
 earwax.cmd.constants	

 	
 	
 earwax.cmd.game_level	

 	
 	
 earwax.cmd.keys	

 	
 	
 earwax.cmd.main	

 	
 	
 earwax.cmd.project	

 	
 	
 earwax.cmd.project_credit	

 	
 	
 earwax.cmd.subcommands	

 	
 	
 earwax.cmd.subcommands.configure_earwax	

 	
 	
 earwax.cmd.subcommands.conversation_tree	

 	
 	
 earwax.cmd.subcommands.game	

 	
 	
 earwax.cmd.subcommands.game_map	

 	
 	
 earwax.cmd.subcommands.init_project	

 	
 	
 earwax.cmd.subcommands.story	

 	
 	
 earwax.cmd.subcommands.vault	

 	
 	
 earwax.cmd.variable	

 	
 	
 earwax.config	

 	
 	
 earwax.configuration	

 	
 	
 earwax.conversation_level	

 	
 	
 earwax.credit	

 	
 	
 earwax.dialogue_tree	

 	
 	
 earwax.die	

 	
 	
 earwax.editor	

 	
 	
 earwax.event_matcher	

 	
 	
 earwax.game	

 	
 	
 earwax.game_board	

 	
 	
 earwax.hat_directions	

 	
 	
 earwax.input_modes	

 	
 	
 earwax.level	

 	
 	
 earwax.mapping	

 	
 	
 earwax.mapping.box	

 	
 	
 earwax.mapping.box_level	

 	
 	
 earwax.mapping.door	

 	
 	
 earwax.mapping.map_editor	

 	
 	
 earwax.mapping.portal	

 	
 	
 earwax.menus	

 	
 	
 earwax.menus.action_menu	

 	
 	
 earwax.menus.config_menu	

 	
 	
 earwax.menus.file_menu	

 	
 	
 earwax.menus.menu	

 	
 	
 earwax.menus.menu_item	

 	
 	
 earwax.menus.reverb_editor	

 	
 	
 earwax.mixins	

 	
 	
 earwax.networking	

 	
 	
 earwax.point	

 	
 	
 earwax.promises	

 	
 	
 earwax.promises.base	

 	
 	
 earwax.promises.staggered_promise	

 	
 	
 earwax.promises.threaded_promise	

 	
 	
 earwax.reverb	

 	
 	
 earwax.rumble_effects	

 	
 	
 earwax.sdl	

 	
 	
 earwax.sound	

 	
 	
 earwax.speech	

 	
 	
 earwax.story	

 	
 	
 earwax.story.context	

 	
 	
 earwax.story.edit_level	

 	
 	
 earwax.story.play_level	

 	
 	
 earwax.story.world	

 	
 	
 earwax.task	

 	
 	
 earwax.track	

 	
 	
 earwax.types	

 	
 	
 earwax.utils	

 	
 	
 earwax.vault_file	

 	
 	
 earwax.walking_directions	

 	
 	
 earwax.yaml	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	Action (class in earwax.action)

 	action() (earwax.action_map.ActionMap method)

 	action_menu() (earwax.menus.action_menu.ActionMenu method)

 	(earwax.menus.ActionMenu method)

 	action_title() (earwax.menus.action_menu.ActionMenu method)

 	(earwax.menus.ActionMenu method)

 	ActionMap (class in earwax.action_map)

 	ActionMenu (class in earwax.menus)

 	(class in earwax.menus.action_menu)

 	actions_menu() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	activate() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	(earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

 	(earwax.story.PlayLevel method)

 	(earwax.story.play_level.PlayLevel method)

 	activate_handler() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	add_action() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	add_actions() (earwax.action_map.ActionMap method)

 	add_ambiance() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	add_box() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	add_boxes() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	add_default_actions() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	
 	add_help() (in module earwax.cmd.main)

 	add_item() (earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

 	add_path() (earwax.vault_file.VaultFile method)

 	add_room() (earwax.story.StoryWorld method)

 	(earwax.story.world.StoryWorld method)

 	add_subcommands() (in module earwax.cmd.main)

 	add_submenu() (earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

 	add_template() (earwax.mapping.map_editor.MapEditorContext method)

 	(earwax.mapping.MapEditorContext method)

 	adjust_value() (earwax.menus.reverb_editor.ReverbEditor method)

 	(earwax.menus.ReverbEditor method)

 	adjust_volume() (earwax.game.Game method)

 	after_run() (earwax.game.Game method)

 	all_objects() (earwax.story.StoryWorld method)

 	(earwax.story.world.StoryWorld method)

 	AlreadyConnected

 	AlreadyConnecting

 	AlreadyDestroyed

 	Ambiance (class in earwax.ambiance)

 	ambiance (earwax.track.TrackTypes attribute)

 	ambiance_menu() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	ambiance_volume (earwax.configuration.SoundConfig attribute)

 	ambiances_menu() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	AnchorPoints (class in earwax.mapping.map_editor)

 	angle_between() (earwax.point.Point method)

 	area (earwax.mapping.box.BoxBounds attribute)

 	(earwax.mapping.BoxBounds attribute)

B

 	
 	backward() (earwax.story.edit_level.ObjectPositionLevel method)

 	(earwax.story.ObjectPositionLevel method)

 	before_run() (earwax.game.Game method)

 	(earwax.story.StoryContext method)

 	(earwax.story.context.StoryContext method)

 	beginning_of_line() (earwax.editor.Editor method)

 	bottom_back_left (earwax.mapping.map_editor.AnchorPoints attribute)

 	bottom_back_right (earwax.mapping.map_editor.AnchorPoints attribute)

 	bottom_front_left (earwax.mapping.map_editor.AnchorPoints attribute)

 	bottom_front_right (earwax.mapping.map_editor.AnchorPoints attribute)

 	Box (class in earwax.mapping)

 	(class in earwax.mapping.box)

 	box_menu() (earwax.mapping.map_editor.MapEditor method)

 	(earwax.mapping.MapEditor method)

 	box_sound() (earwax.mapping.map_editor.MapEditor method)

 	(earwax.mapping.MapEditor method)

 	box_sounds() (earwax.mapping.map_editor.MapEditor method)

 	(earwax.mapping.MapEditor method)

 	BoxBounds (class in earwax.mapping)

 	(class in earwax.mapping.box)

 	
 	BoxError

 	boxes_menu() (earwax.mapping.map_editor.MapEditor method)

 	(earwax.mapping.MapEditor method)

 	BoxLevel (class in earwax.mapping)

 	(class in earwax.mapping.box_level)

 	BoxLevelData (class in earwax.cmd.game_level)

 	BoxPoint (class in earwax.mapping.map_editor)

 	BoxTemplate (class in earwax.mapping.map_editor)

 	BoxTypes (class in earwax.mapping)

 	(class in earwax.mapping.box)

 	braille (earwax.configuration.SpeechConfig attribute)

 	BufferCache (class in earwax.sound)

 	BufferDirectory (class in earwax.sound)

 	buffers_default() (earwax.sound.BufferDirectory method)

 	build_inventory() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	build_story() (in module earwax.cmd.subcommands.story)

 	builder_menu() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

C

 	
 	calculate_coordinates() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	CallResponseSettings (class in earwax.conversation_level)

 	cancel() (earwax.game.Game method)

 	(earwax.promises.Promise method)

 	(earwax.promises.StaggeredPromise method)

 	(earwax.promises.ThreadedPromise method)

 	(earwax.promises.base.Promise method)

 	(earwax.promises.staggered_promise.StaggeredPromise method)

 	(earwax.promises.threaded_promise.ThreadedPromise method)

 	(earwax.story.ObjectPositionLevel method)

 	(earwax.story.edit_level.ObjectPositionLevel method)

 	cancelled (earwax.promises.base.PromiseStates attribute)

 	(earwax.promises.PromiseStates attribute)

 	category (earwax.story.world.WorldState attribute)

 	(earwax.story.WorldState attribute)

 	CDumper (class in earwax.yaml)

 	change_volume() (earwax.game.Game method)

 	check() (earwax.promises.threaded_promise.ThreadedPromise method)

 	(earwax.promises.ThreadedPromise method)

 	check_destroyed() (earwax.sound.Sound method)

 	classes (earwax.story.RoomObject attribute)

 	(earwax.story.world.RoomObject attribute)

 	clear() (earwax.editor.Editor method)

 	(earwax.story.ObjectPositionLevel method)

 	(earwax.story.edit_level.ObjectPositionLevel method)

 	clear_levels() (earwax.game.Game method)

 	clear_value() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	click_mouse() (earwax.game.Game method)

 	CLoader (class in earwax.yaml)

 	close() (earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	(earwax.networking.NetworkConnection method)

 	cmd_help() (in module earwax.cmd.main)

 	cmd_main() (in module earwax.cmd)

 	(in module earwax.cmd.main)

 	code (earwax.cmd.game_level.GameLevelScript attribute)

 	collapse_item() (earwax.conversation_level.ConversationEditor method)

 	collide() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	compile_vault() (in module earwax.cmd.subcommands.vault)

 	complain_box() (earwax.mapping.map_editor.MapEditor method)

 	(earwax.mapping.MapEditor method)

 	Config (class in earwax.config)

 	ConfigMenu (class in earwax.menus)

 	(class in earwax.menus.config_menu)

 	configure_earwax() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	(in module earwax.cmd.subcommands.configure_earwax)

 	configure_music() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	configure_reverb() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	ConfigValue (class in earwax.config)

 	
 	connect() (earwax.networking.NetworkConnection method)

 	connect_reverb() (earwax.sound.Sound method)

 	connected (earwax.networking.ConnectionStates attribute)

 	connecting (earwax.networking.ConnectionStates attribute)

 	ConnectionStates (class in earwax.networking)

 	contains_point() (earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	controller (earwax.input_modes.InputModes attribute)

 	ConversationBase (class in earwax.conversation_level)

 	ConversationEditor (class in earwax.conversation_level)

 	ConversationSection (class in earwax.conversation_level)

 	ConversationTree (class in earwax.conversation_level)

 	coordinates (earwax.point.Point attribute)

 	copy() (earwax.editor.Editor method)

 	(earwax.point.Point method)

 	copy_action() (in module earwax.cmd.subcommands.story)

 	copy_actions() (in module earwax.cmd.subcommands.story)

 	copy_ambiances() (in module earwax.cmd.subcommands.story)

 	copy_path() (in module earwax.cmd.subcommands.story)

 	could_fit() (earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	create_box() (earwax.mapping.map_editor.MapEditor method)

 	(earwax.mapping.MapEditor method)

 	create_exit() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	(earwax.story.WorldRoom method)

 	(earwax.story.world.WorldRoom method)

 	create_fitted() (earwax.mapping.Box class method)

 	(earwax.mapping.box.Box class method)

 	create_menu() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	create_object() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	(earwax.story.WorldRoom method)

 	(earwax.story.world.WorldRoom method)

 	create_room() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	create_row() (earwax.mapping.Box class method)

 	(earwax.mapping.box.Box class method)

 	create_story() (in module earwax.cmd.subcommands.story)

 	Credit (class in earwax.credit)

 	credit_menu() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	credits_menu() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	current_item (earwax.conversation_level.ConversationEditor attribute)

 	(earwax.menus.Menu attribute)

 	(earwax.menus.menu.Menu attribute)

 	current_tile (earwax.game_board.GameBoard attribute)

 	CurrentBox (class in earwax.mapping)

 	(class in earwax.mapping.box_level)

 	cut() (earwax.editor.Editor method)

 	cycle_category() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	cycle_object() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

D

 	
 	decorate() (earwax.promises.staggered_promise.StaggeredPromise class method)

 	(earwax.promises.StaggeredPromise class method)

 	decrement (earwax.menus.reverb_editor.ValueAdjustments attribute)

 	default (earwax.menus.reverb_editor.ValueAdjustments attribute)

 	default_cache_size (earwax.configuration.SoundConfig attribute)

 	default_item_activate_sound (earwax.configuration.MenuConfig attribute)

 	default_item_select_sound (earwax.configuration.MenuConfig attribute)

 	delete() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	delete_ambiance() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	depth (earwax.mapping.box.BoxBounds attribute)

 	(earwax.mapping.BoxBounds attribute)

 	describe_current_box() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	describe_room() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	destination (earwax.story.RoomExit attribute)

 	(earwax.story.world.RoomExit attribute)

 	destroy() (earwax.sound.Sound method)

 	destroy_all() (earwax.sound.BufferCache method)

 	(earwax.sound.SoundManager method)

 	destroy_generator() (earwax.sound.Sound method)

 	destroy_source() (earwax.sound.Sound method)

 	destroyed (earwax.sound.Sound attribute)

 	DialogueLine (class in earwax.dialogue_tree)

 	DialogueTree (class in earwax.dialogue_tree)

 	Die (class in earwax.die)

 	directions_to() (earwax.point.Point method)

 	disconnect_reverb() (earwax.sound.Sound method)

 	disconnected (earwax.networking.ConnectionStates attribute)

 	dismiss() (earwax.mixins.DismissibleMixin method)

 	DismissibleMixin (class in earwax.mixins)

 	dispatch() (earwax.event_matcher.EventMatcher method)

 	
 	distance_between() (earwax.point.Point method)

 	do_action() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	do_delete() (earwax.editor.Editor method)

 	do_next() (earwax.promises.staggered_promise.StaggeredPromise method)

 	(earwax.promises.StaggeredPromise method)

 	done (earwax.promises.base.PromiseStates attribute)

 	(earwax.promises.PromiseStates attribute)

 	done() (earwax.promises.base.Promise method)

 	(earwax.promises.Promise method)

 	(earwax.story.ObjectPositionLevel method)

 	(earwax.story.edit_level.ObjectPositionLevel method)

 	Door (class in earwax.mapping)

 	(class in earwax.mapping.door)

 	down() (earwax.story.edit_level.ObjectPositionLevel method)

 	(earwax.story.ObjectPositionLevel method)

 	drop_object() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	drop_object_menu() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	droppable (earwax.story.RoomObjectTypes attribute)

 	(earwax.story.world.RoomObjectTypes attribute)

 	dump() (earwax.config.Config method)

 	(earwax.config.ConfigValue method)

 	(earwax.mixins.DumpLoadMixin method)

 	(earwax.story.StoryWorld method)

 	(earwax.story.world.StoryWorld method)

 	(in module earwax.yaml)

 	dump_path() (in module earwax.configuration)

 	DumpablePoint (class in earwax.story)

 	(class in earwax.story.world)

 	DumpableReverb (class in earwax.story)

 	(class in earwax.story.world)

 	DumpLoadMixin (class in earwax.mixins)

E

 	
 	earwax (module)

 	earwax.action (module)

 	earwax.action_map (module)

 	earwax.ambiance (module)

 	earwax.cmd (module)

 	earwax.cmd.constants (module)

 	earwax.cmd.game_level (module)

 	earwax.cmd.keys (module)

 	earwax.cmd.main (module)

 	earwax.cmd.project (module)

 	earwax.cmd.project_credit (module)

 	earwax.cmd.subcommands (module)

 	earwax.cmd.subcommands.configure_earwax (module)

 	earwax.cmd.subcommands.conversation_tree (module)

 	earwax.cmd.subcommands.game (module)

 	earwax.cmd.subcommands.game_map (module)

 	earwax.cmd.subcommands.init_project (module)

 	earwax.cmd.subcommands.story (module)

 	earwax.cmd.subcommands.vault (module)

 	earwax.cmd.variable (module)

 	earwax.config (module)

 	earwax.configuration (module)

 	earwax.conversation_level (module)

 	earwax.credit (module)

 	earwax.dialogue_tree (module)

 	earwax.die (module)

 	earwax.editor (module)

 	earwax.event_matcher (module)

 	earwax.game (module)

 	earwax.game_board (module)

 	earwax.hat_directions (module)

 	earwax.input_modes (module)

 	earwax.level (module)

 	earwax.mapping (module)

 	earwax.mapping.box (module)

 	earwax.mapping.box_level (module)

 	earwax.mapping.door (module)

 	earwax.mapping.map_editor (module)

 	earwax.mapping.portal (module)

 	earwax.menus (module)

 	earwax.menus.action_menu (module)

 	earwax.menus.config_menu (module)

 	earwax.menus.file_menu (module)

 	earwax.menus.menu (module)

 	earwax.menus.menu_item (module)

 	earwax.menus.reverb_editor (module)

 	earwax.mixins (module)

 	earwax.networking (module)

 	earwax.point (module)

 	earwax.promises (module)

 	earwax.promises.base (module)

 	earwax.promises.staggered_promise (module)

 	earwax.promises.threaded_promise (module)

 	earwax.reverb (module)

 	earwax.rumble_effects (module)

 	earwax.sdl (module)

 	earwax.sound (module)

 	earwax.speech (module)

 	
 	earwax.story (module)

 	earwax.story.context (module)

 	earwax.story.edit_level (module)

 	earwax.story.play_level (module)

 	earwax.story.world (module)

 	earwax.task (module)

 	earwax.track (module)

 	earwax.types (module)

 	earwax.utils (module)

 	earwax.vault_file (module)

 	earwax.walking_directions (module)

 	earwax.yaml (module)

 	earwax_bug() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	earwax_config() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	earwax_credit() (earwax.credit.Credit class method)

 	EarwaxConfig (class in earwax.configuration)

 	east (earwax.point.PointDirections attribute)

 	echo() (earwax.editor.Editor method)

 	echo_current_character() (earwax.editor.Editor method)

 	edit_action() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	edit_ambiance() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	edit_convo() (in module earwax.cmd.subcommands.conversation_tree)

 	edit_map() (in module earwax.cmd.subcommands.game_map)

 	edit_object_class() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	edit_object_class_names() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	edit_object_classes() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	edit_story() (in module earwax.cmd.subcommands.story)

 	edit_value() (earwax.menus.reverb_editor.ReverbEditor method)

 	(earwax.menus.ReverbEditor method)

 	edit_volume_multiplier() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	EditLevel (class in earwax.story)

 	(class in earwax.story.edit_level)

 	Editor (class in earwax.editor)

 	EditorConfig (class in earwax.configuration)

 	editors (earwax.configuration.EarwaxConfig attribute)

 	empty (earwax.mapping.box.BoxTypes attribute)

 	(earwax.mapping.BoxTypes attribute)

 	end() (earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

 	end_of_line() (earwax.editor.Editor method)

 	english_list() (in module earwax.utils)

 	error (earwax.networking.ConnectionStates attribute)

 	(earwax.promises.PromiseStates attribute)

 	(earwax.promises.base.PromiseStates attribute)

 	error() (earwax.promises.base.Promise method)

 	(earwax.promises.Promise method)

 	EventMatcher (class in earwax.event_matcher)

 	exits (earwax.story.world.WorldStateCategories attribute)

 	(earwax.story.WorldStateCategories attribute)

 	expand_item() (earwax.conversation_level.ConversationEditor method)

F

 	
 	FileMenu (class in earwax.menus)

 	(class in earwax.menus.file_menu)

 	finalise_run() (earwax.game.Game method)

 	Finisher (class in earwax.conversation_level)

 	finisher_menu() (earwax.conversation_level.ConversationEditor method)

 	float() (earwax.editor.TextValidator class method)

 	floor() (earwax.point.Point method)

 	format_timedelta() (in module earwax.utils)

 	forward() (earwax.story.edit_level.ObjectPositionLevel method)

 	(earwax.story.ObjectPositionLevel method)

 	
 	from_credits() (earwax.menus.Menu class method)

 	(earwax.menus.menu.Menu class method)

 	from_file() (earwax.mixins.DumpLoadMixin class method)

 	from_filename() (earwax.mixins.DumpLoadMixin class method)

 	from_path() (earwax.ambiance.Ambiance class method)

 	(earwax.sound.Sound class method)

 	(earwax.track.Track class method)

 	(earwax.vault_file.VaultFile class method)

 	from_stream() (earwax.sound.Sound class method)

G

 	
 	Game (class in earwax.game)

 	GameBoard (class in earwax.game_board)

 	GameLevel (class in earwax.cmd.game_level)

 	GameLevelScript (class in earwax.cmd.game_level)

 	GameNotRunning

 	get_angle_between() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	get_boxes() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	get_buffer() (earwax.sound.BufferCache method)

 	get_children() (earwax.dialogue_tree.DialogueTree method)

 	get_containing_box() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	get_current_box() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	get_default_buffer_cache() (earwax.game.Game method)

 	get_default_config_file() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	get_default_context() (earwax.mapping.map_editor.MapEditor method)

 	(earwax.mapping.MapEditor method)

 	get_default_id() (earwax.mapping.map_editor.MapEditorBox method)

 	get_default_input_mode() (earwax.menus.action_menu.ActionMenu method)

 	(earwax.menus.ActionMenu method)

 	get_default_label() (earwax.mapping.map_editor.BoxTemplate method)

 	get_default_logger() (earwax.game.Game method)

 	(earwax.story.StoryContext method)

 	(earwax.story.context.StoryContext method)

 	get_default_reverb() (earwax.menus.reverb_editor.ReverbEditor method)

 	(earwax.menus.ReverbEditor method)

 	get_default_room_id() (earwax.story.world.WorldState method)

 	(earwax.story.WorldState method)

 	get_default_settings() (earwax.menus.reverb_editor.ReverbEditor method)

 	(earwax.menus.ReverbEditor method)

 	get_default_sound_manager() (earwax.level.IntroLevel method)

 	get_default_state() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	
 	get_description() (earwax.story.world.WorldRoom method)

 	(earwax.story.WorldRoom method)

 	get_dump_value() (earwax.mixins.DumpLoadMixin method)

 	get_filename() (in module earwax.cmd.subcommands.story)

 	get_gain() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	get_initial_position() (earwax.story.edit_level.ObjectPositionLevel method)

 	(earwax.story.ObjectPositionLevel method)

 	get_load_value() (earwax.mixins.DumpLoadMixin class method)

 	get_main_menu() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	get_name() (earwax.story.world.WorldRoom method)

 	(earwax.story.WorldRoom method)

 	get_nearest_point() (earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	get_objects() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	get_option_name() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	get_rooms() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	get_settings_path() (earwax.game.Game method)

 	get_size() (earwax.sound.BufferCache method)

 	get_subsection_name() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	get_tile() (earwax.game_board.GameBoard method)

 	get_title() (earwax.menus.menu_item.MenuItem method)

 	(earwax.menus.MenuItem method)

 	(earwax.mixins.TitleMixin method)

 	get_type() (earwax.cmd.variable.Variable method)

 	get_uri() (earwax.sound.BufferCache method)

 	get_window_caption() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	goto_room() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

H

 	
 	handle_action() (earwax.menus.action_menu.ActionMenu method)

 	(earwax.menus.ActionMenu method)

 	handle_bool() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	handle_box() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	handle_door() (earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	handle_float() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	handle_int() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	handle_path() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	
 	handle_portal() (earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	handle_string() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	hat_alphabet (earwax.configuration.EditorConfig attribute)

 	hat_direction_to_string() (earwax.menus.action_menu.ActionMenu method)

 	(earwax.menus.ActionMenu method)

 	hat_down() (earwax.editor.Editor method)

 	hat_up() (earwax.editor.Editor method)

 	height (earwax.mapping.box.BoxBounds attribute)

 	(earwax.mapping.BoxBounds attribute)

 	here (earwax.point.PointDirections attribute)

 	home() (earwax.conversation_level.ConversationEditor method)

 	(earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

I

 	
 	id_box() (earwax.mapping.map_editor.MapEditor method)

 	(earwax.mapping.MapEditor method)

 	in_direction() (earwax.point.Point method)

 	IncorrectVaultKey

 	increment (earwax.menus.reverb_editor.ValueAdjustments attribute)

 	init_project() (in module earwax.cmd.subcommands.init_project)

 	init_sdl() (earwax.game.Game method)

 	initial_room (earwax.story.StoryWorld attribute)

 	(earwax.story.world.StoryWorld attribute)

 	InputModes (class in earwax.input_modes)

 	insert_text() (earwax.editor.Editor method)

 	int() (earwax.editor.TextValidator class method)

 	IntroLevel (class in earwax.level)

 	InvalidLabel

 	inventory_menu() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	is_door (earwax.mapping.Box attribute)

 	(earwax.mapping.box.Box attribute)

 	
 	is_droppable (earwax.story.RoomObject attribute)

 	(earwax.story.world.RoomObject attribute)

 	is_edge() (earwax.mapping.box.BoxBounds method)

 	(earwax.mapping.BoxBounds method)

 	is_portal (earwax.mapping.Box attribute)

 	(earwax.mapping.box.Box attribute)

 	is_stream (earwax.sound.Sound attribute)

 	is_stuck (earwax.story.RoomObject attribute)

 	(earwax.story.world.RoomObject attribute)

 	is_takeable (earwax.story.RoomObject attribute)

 	(earwax.story.world.RoomObject attribute)

 	is_usable (earwax.story.RoomObject attribute)

 	(earwax.story.world.RoomObject attribute)

 	is_wall() (earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	iskeyword() (in module earwax.mapping.map_editor)

 	item() (earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

 	ItemsStack (class in earwax.conversation_level)

K

 	
 	keyboard (earwax.input_modes.InputModes attribute)

L

 	
 	label_box() (earwax.mapping.map_editor.MapEditor method)

 	(earwax.mapping.MapEditor method)

 	left() (earwax.story.edit_level.ObjectPositionLevel method)

 	(earwax.story.ObjectPositionLevel method)

 	Level (class in earwax.level)

 	level (earwax.game.Game attribute)

 	LevelData (class in earwax.cmd.game_level)

 	LevelMap (class in earwax.mapping.map_editor)

 	load() (earwax.cmd.variable.Variable class method)

 	(earwax.config.Config method)

 	(earwax.config.ConfigValue method)

 	(earwax.mixins.DumpLoadMixin class method)

 	(earwax.story.StoryContext method)

 	(earwax.story.StoryWorld class method)

 	(earwax.story.context.StoryContext method)

 	(earwax.story.world.StoryWorld class method)

 	(in module earwax.yaml)

 	
 	load_path() (in module earwax.configuration)

M

 	
 	main_menu() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	make_directory() (in module earwax.cmd.subcommands.story)

 	make_reverb() (earwax.reverb.Reverb method)

 	make_sound() (earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

 	MapEditor (class in earwax.mapping)

 	(class in earwax.mapping.map_editor)

 	MapEditorBox (class in earwax.mapping.map_editor)

 	MapEditorContext (class in earwax.mapping)

 	(class in earwax.mapping.map_editor)

 	master_volume (earwax.configuration.SoundConfig attribute)

 	max_volume (earwax.configuration.SoundConfig attribute)

 	maybe_raise() (in module earwax.sdl)

 	maze() (earwax.mapping.Box class method)

 	(earwax.mapping.box.Box class method)

 	Menu (class in earwax.menus)

 	(class in earwax.menus.menu)

 	MenuConfig (class in earwax.configuration)

 	MenuItem (class in earwax.menus)

 	(class in earwax.menus.menu_item)

 	
 	menus (earwax.configuration.EarwaxConfig attribute)

 	motion() (earwax.level.Level method)

 	motion_backspace() (earwax.editor.Editor method)

 	motion_delete() (earwax.editor.Editor method)

 	motion_down() (earwax.editor.Editor method)

 	motion_left() (earwax.editor.Editor method)

 	motion_right() (earwax.editor.Editor method)

 	motion_up() (earwax.editor.Editor method)

 	mouse_to_string() (earwax.menus.action_menu.ActionMenu method)

 	(earwax.menus.ActionMenu method)

 	move() (earwax.game_board.GameBoard method)

 	(earwax.mapping.BoxLevel method)

 	(earwax.mapping.box_level.BoxLevel method)

 	(earwax.story.ObjectPositionLevel method)

 	(earwax.story.edit_level.ObjectPositionLevel method)

 	move_down() (earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

 	move_up() (earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

 	music (earwax.track.TrackTypes attribute)

 	music_volume (earwax.configuration.SoundConfig attribute)

N

 	
 	navigate_to() (earwax.menus.file_menu.FileMenu method)

 	(earwax.menus.FileMenu method)

 	nearest_by_type() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	nearest_door() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	nearest_portal() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	nearest_square() (in module earwax.utils)

 	NearestBox (class in earwax.mapping)

 	(class in earwax.mapping.box_level)

 	NetworkConnection (class in earwax.networking)

 	NetworkingConnectionError

 	new_convo() (in module earwax.cmd.subcommands.conversation_tree)

 	new_finisher() (earwax.conversation_level.ConversationEditor method)

 	new_game() (in module earwax.cmd.subcommands.game)

 	new_map() (in module earwax.cmd.subcommands.game_map)

 	new_section() (earwax.conversation_level.ConversationEditor method)

 	
 	new_vault() (in module earwax.cmd.subcommands.vault)

 	next_category() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	next_item() (earwax.conversation_level.ConversationEditor method)

 	next_object() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	NoCache

 	north (earwax.point.PointDirections attribute)

 	northeast (earwax.point.PointDirections attribute)

 	northwest (earwax.point.PointDirections attribute)

 	NoSuchTile

 	not_connected (earwax.networking.ConnectionStates attribute)

 	not_empty() (earwax.editor.TextValidator class method)

 	not_ready (earwax.promises.base.PromiseStates attribute)

 	(earwax.promises.PromiseStates attribute)

 	NotADoor, [1]

 	NotAPortal, [1]

 	NotConnectedYet

O

 	
 	object (earwax.story.play_level.PlayLevel attribute)

 	(earwax.story.PlayLevel attribute)

 	object_actions() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	object_menu() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	ObjectPositionLevel (class in earwax.story)

 	(class in earwax.story.edit_level)

 	objects (earwax.story.world.WorldStateCategories attribute)

 	(earwax.story.WorldStateCategories attribute)

 	objects_menu() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	on_activate() (earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	on_cancel() (earwax.promises.base.Promise method)

 	(earwax.promises.Promise method)

 	on_close() (earwax.game.Game method)

 	(earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	on_collide() (earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	on_connect() (earwax.networking.NetworkConnection method)

 	on_cover() (earwax.level.Level method)

 	on_data() (earwax.networking.NetworkConnection method)

 	on_disconnect() (earwax.networking.NetworkConnection method)

 	on_done() (earwax.promises.base.Promise method)

 	(earwax.promises.Promise method)

 	on_enter() (earwax.mapping.Portal method)

 	(earwax.mapping.portal.Portal method)

 	on_error() (earwax.networking.NetworkConnection method)

 	(earwax.promises.Promise method)

 	(earwax.promises.base.Promise method)

 	on_exit() (earwax.mapping.Portal method)

 	(earwax.mapping.portal.Portal method)

 	on_finally() (earwax.promises.base.Promise method)

 	(earwax.promises.Promise method)

 	on_footstep() (earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	on_joybutton_press() (earwax.game.Game method)

 	on_joybutton_release() (earwax.game.Game method)

 	on_joyhat_motion() (earwax.game.Game method)

 	on_key_press() (earwax.game.Game method)

 	on_key_release() (earwax.game.Game method)

 	on_mouse_press() (earwax.game.Game method)

 	on_mouse_release() (earwax.game.Game method)

 	on_move_fail() (earwax.game_board.GameBoard method)

 	(earwax.mapping.BoxLevel method)

 	(earwax.mapping.MapEditor method)

 	(earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.map_editor.MapEditor method)

 	
 	on_move_success() (earwax.game_board.GameBoard method)

 	(earwax.mapping.BoxLevel method)

 	(earwax.mapping.box_level.BoxLevel method)

 	on_next() (earwax.promises.staggered_promise.StaggeredPromise method)

 	(earwax.promises.StaggeredPromise method)

 	on_open() (earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	on_pop() (earwax.level.IntroLevel method)

 	(earwax.level.Level method)

 	(earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

 	(earwax.story.PlayLevel method)

 	(earwax.story.play_level.PlayLevel method)

 	on_push() (earwax.game_board.GameBoard method)

 	(earwax.level.IntroLevel method)

 	(earwax.level.Level method)

 	(earwax.mapping.BoxLevel method)

 	(earwax.mapping.box_level.BoxLevel method)

 	(earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

 	(earwax.story.PlayLevel method)

 	(earwax.story.play_level.PlayLevel method)

 	on_reveal() (earwax.level.Level method)

 	(earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

 	on_roll() (earwax.die.Die method)

 	on_selected() (earwax.menus.menu_item.MenuItem method)

 	(earwax.menus.MenuItem method)

 	on_submit() (earwax.editor.Editor method)

 	on_text() (earwax.editor.Editor method)

 	(earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

 	on_text_motion() (earwax.level.Level method)

 	on_turn() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	open() (earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	open_joysticks() (earwax.game.Game method)

 	option_menu() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	origin() (earwax.point.Point class method)

 	output() (earwax.game.Game method)

 	output_audio (earwax.conversation_level.CallResponseSettings attribute)

 	output_braille (earwax.conversation_level.CallResponseSettings attribute)

 	output_item() (earwax.conversation_level.ConversationEditor method)

 	output_speech (earwax.conversation_level.CallResponseSettings attribute)

P

 	
 	paste() (earwax.editor.Editor method)

 	path (earwax.cmd.project_credit.ProjectCredit attribute)

 	pause() (earwax.sound.Sound method)

 	(earwax.story.PlayLevel method)

 	(earwax.story.play_level.PlayLevel method)

 	paused (earwax.sound.Sound attribute)

 	perform_action() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	play() (earwax.ambiance.Ambiance method)

 	(earwax.sound.Sound method)

 	(earwax.story.StoryContext method)

 	(earwax.story.context.StoryContext method)

 	(earwax.track.Track method)

 	play_action_sound() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	play_cursor_sound() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	play_object_ambiances() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	play_path() (earwax.sound.SoundManager method)

 	play_story() (in module earwax.cmd.subcommands.story)

 	play_stream() (earwax.sound.SoundManager method)

 	PlayLevel (class in earwax.story)

 	(class in earwax.story.play_level)

 	pluralise() (in module earwax.utils)

 	Point (class in earwax.point)

 	point_menu() (earwax.mapping.map_editor.MapEditor method)

 	(earwax.mapping.MapEditor method)

 	PointDirections (class in earwax.point)

 	points_menu() (earwax.mapping.map_editor.MapEditor method)

 	(earwax.mapping.MapEditor method)

 	
 	poll() (earwax.networking.NetworkConnection method)

 	poll_synthizer_events() (earwax.game.Game method)

 	pop_buffer() (earwax.sound.BufferCache method)

 	pop_level() (earwax.game.Game method)

 	pop_levels() (earwax.game.Game method)

 	populate() (earwax.game_board.GameBoard method)

 	populate_from_dict() (earwax.config.Config method)

 	Portal (class in earwax.mapping)

 	(class in earwax.mapping.portal)

 	press_key() (earwax.game.Game method)

 	previous_category() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	previous_item() (earwax.conversation_level.ConversationEditor method)

 	previous_object() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	Project (class in earwax.cmd.project)

 	ProjectCredit (class in earwax.cmd.project_credit)

 	Promise (class in earwax.promises)

 	(class in earwax.promises.base)

 	PromiseStates (class in earwax.promises)

 	(class in earwax.promises.base)

 	prune_buffers() (earwax.sound.BufferCache method)

 	push_action_menu() (earwax.game.Game method)

 	push_actions_menu() (in module earwax.story.edit_level)

 	push_credits() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	push_credits_menu() (earwax.game.Game method)

 	push_level() (earwax.game.Game method)

 	push_rooms_menu() (in module earwax.story.edit_level)

R

 	
 	random() (earwax.point.Point class method)

 	random_buffer() (earwax.sound.BufferDirectory method)

 	random_file() (in module earwax.utils)

 	random_path() (earwax.sound.BufferDirectory method)

 	ready (earwax.promises.base.PromiseStates attribute)

 	(earwax.promises.PromiseStates attribute)

 	rebuild_menu() (earwax.menus.file_menu.FileMenu method)

 	(earwax.menus.FileMenu method)

 	regexp() (earwax.editor.TextValidator class method)

 	register_and_bind() (earwax.mixins.RegisterEventMixin method)

 	register_box() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	register_event() (earwax.mixins.RegisterEventMixin method)

 	register_func() (earwax.promises.threaded_promise.ThreadedPromise method)

 	(earwax.promises.ThreadedPromise method)

 	register_sound() (earwax.sound.SoundManager method)

 	register_task() (earwax.game.Game method)

 	RegisterEventMixin (class in earwax.mixins)

 	reload_template() (earwax.mapping.map_editor.MapEditorContext method)

 	(earwax.mapping.MapEditorContext method)

 	remessage() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	remove_box() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	remove_sound() (earwax.sound.SoundManager method)

 	remove_task() (earwax.game.Game method)

 	rename() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	rename_box() (earwax.mapping.map_editor.MapEditor method)

 	(earwax.mapping.MapEditor method)

 	replace_level() (earwax.game.Game method)

 	reposition_object() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	reset() (earwax.menus.reverb_editor.ReverbEditor method)

 	(earwax.menus.ReverbEditor method)

 	(earwax.story.ObjectPositionLevel method)

 	(earwax.story.edit_level.ObjectPositionLevel method)

 	reset_source() (earwax.sound.Sound method)

 	
 	response_menu() (earwax.conversation_level.ConversationEditor method)

 	restart() (earwax.sound.Sound method)

 	reveal_level() (earwax.game.Game method)

 	Reverb (class in earwax.reverb)

 	ReverbEditor (class in earwax.menus)

 	(class in earwax.menus.reverb_editor)

 	ReverbSetting (class in earwax.menus.reverb_editor)

 	right() (earwax.story.edit_level.ObjectPositionLevel method)

 	(earwax.story.ObjectPositionLevel method)

 	roll() (earwax.die.Die method)

 	room (earwax.mapping.box.BoxTypes attribute)

 	(earwax.mapping.BoxTypes attribute)

 	(earwax.story.EditLevel attribute)

 	(earwax.story.WorldState attribute)

 	(earwax.story.WorldStateCategories attribute)

 	(earwax.story.edit_level.EditLevel attribute)

 	(earwax.story.world.WorldState attribute)

 	(earwax.story.world.WorldStateCategories attribute)

 	RoomExit (class in earwax.story)

 	(class in earwax.story.world)

 	RoomObject (class in earwax.story)

 	(class in earwax.story.world)

 	RoomObjectClass (class in earwax.story)

 	(class in earwax.story.world)

 	RoomObjectTypes (class in earwax.story)

 	(class in earwax.story.world)

 	RumbleEffect (class in earwax.rumble_effects)

 	RumbleSequence (class in earwax.rumble_effects)

 	RumbleSequenceLine (class in earwax.rumble_effects)

 	run() (earwax.action.Action method)

 	(earwax.game.Game method)

 	(earwax.promises.Promise method)

 	(earwax.promises.StaggeredPromise method)

 	(earwax.promises.ThreadedPromise method)

 	(earwax.promises.base.Promise method)

 	(earwax.promises.staggered_promise.StaggeredPromise method)

 	(earwax.promises.threaded_promise.ThreadedPromise method)

 	running (earwax.promises.base.PromiseStates attribute)

 	(earwax.promises.PromiseStates attribute)

S

 	
 	save() (earwax.config.Config method)

 	(earwax.conversation_level.ConversationEditor method)

 	(earwax.mapping.MapEditor method)

 	(earwax.mapping.map_editor.MapEditor method)

 	(earwax.mixins.DumpLoadMixin method)

 	(earwax.vault_file.VaultFile method)

 	save_state() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	save_world() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	scheduled_close() (earwax.mapping.Box method)

 	(earwax.mapping.box.Box method)

 	script_name (earwax.cmd.game_level.GameLevelScript attribute)

 	script_path (earwax.cmd.game_level.GameLevelScript attribute)

 	sdl_raise() (in module earwax.sdl)

 	SdlError

 	select_item() (earwax.menus.file_menu.FileMenu method)

 	(earwax.menus.FileMenu method)

 	send() (earwax.networking.NetworkConnection method)

 	set_action_sound() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	set_bearing() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	set_coordinates() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	set_cursor_position() (earwax.editor.Editor method)

 	set_gain() (earwax.sound.Sound method)

 	set_initial_id() (earwax.conversation_level.ConversationEditor method)

 	set_initial_room() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	set_looping() (earwax.sound.Sound method)

 	set_message() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	set_name() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	set_object_type() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	set_panner_strategy() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	set_position() (earwax.sound.Sound method)

 	set_room() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	set_sound() (earwax.conversation_level.ConversationEditor method)

 	set_text() (earwax.conversation_level.ConversationEditor method)

 	set_value() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	(earwax.menus.ReverbEditor method)

 	(earwax.menus.reverb_editor.ReverbEditor method)

 	set_volume() (earwax.game.Game method)

 	set_world_messages() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	set_world_sound() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	setup() (earwax.game.Game method)

 	setup_run() (earwax.game.Game method)

 	shadow_description() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	shadow_name() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	show_all() (earwax.menus.action_menu.ActionMenu method)

 	(earwax.menus.ActionMenu method)

 	show_coordinates() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	show_facing() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	show_nearest_door() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	
 	show_selection() (earwax.menus.Menu method)

 	(earwax.menus.menu.Menu method)

 	show_warnings() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	shutdown() (earwax.networking.NetworkConnection method)

 	skip() (earwax.level.IntroLevel method)

 	solid (earwax.mapping.box.BoxTypes attribute)

 	(earwax.mapping.BoxTypes attribute)

 	sort_boxes() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	sort_items() (earwax.conversation_level.ConversationEditor method)

 	Sound (class in earwax.sound)

 	sound (earwax.configuration.EarwaxConfig attribute)

 	sound_manager (earwax.mapping.Box attribute)

 	(earwax.mapping.box.Box attribute)

 	sound_volume (earwax.configuration.SoundConfig attribute)

 	SoundConfig (class in earwax.configuration)

 	SoundError

 	SoundManager (class in earwax.sound)

 	SoundManagerError

 	sounds_menu() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	south (earwax.point.PointDirections attribute)

 	southeast (earwax.point.PointDirections attribute)

 	southwest (earwax.point.PointDirections attribute)

 	speak (earwax.configuration.SpeechConfig attribute)

 	speech (earwax.configuration.EarwaxConfig attribute)

 	SpeechConfig (class in earwax.configuration)

 	StaggeredPromise (class in earwax.promises)

 	(class in earwax.promises.staggered_promise)

 	start() (earwax.rumble_effects.RumbleEffect method)

 	(earwax.rumble_effects.RumbleSequence method)

 	(earwax.task.Task method)

 	start_action() (earwax.game.Game method)

 	start_ambiances() (earwax.level.Level method)

 	start_rumble() (earwax.game.Game method)

 	start_tracks() (earwax.level.Level method)

 	state (earwax.story.play_level.PlayLevel attribute)

 	(earwax.story.PlayLevel attribute)

 	stop() (earwax.ambiance.Ambiance method)

 	(earwax.game.Game method)

 	(earwax.task.Task method)

 	(earwax.track.Track method)

 	stop_action() (earwax.game.Game method)

 	stop_action_sounds() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	stop_ambiances() (earwax.level.Level method)

 	stop_object_ambiances() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	stop_rumble() (earwax.game.Game method)

 	stop_tracks() (earwax.level.Level method)

 	StoryContext (class in earwax.story)

 	(class in earwax.story.context)

 	StoryWorld (class in earwax.story)

 	(class in earwax.story.world)

 	StringMixin (class in earwax.story.world)

 	stuck (earwax.story.RoomObjectTypes attribute)

 	(earwax.story.world.RoomObjectTypes attribute)

 	subcommand() (in module earwax.cmd.main)

 	submit() (earwax.editor.Editor method)

 	subsection_menu() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	switch_item() (earwax.conversation_level.ConversationEditor method)

 	symbol_to_string() (earwax.menus.action_menu.ActionMenu method)

 	(earwax.menus.ActionMenu method)

T

 	
 	take_object() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	takeable (earwax.story.RoomObjectTypes attribute)

 	(earwax.story.world.RoomObjectTypes attribute)

 	Task (class in earwax.task)

 	TextValidator (class in earwax.editor)

 	ThreadedPromise (class in earwax.promises)

 	(class in earwax.promises.threaded_promise)

 	TitleMixin (class in earwax.mixins)

 	to_box() (earwax.mapping.map_editor.MapEditorContext method)

 	(earwax.mapping.MapEditorContext method)

 	to_point() (earwax.mapping.map_editor.MapEditorContext method)

 	(earwax.mapping.MapEditorContext method)

 	top_back_left (earwax.mapping.map_editor.AnchorPoints attribute)

 	top_back_right (earwax.mapping.map_editor.AnchorPoints attribute)

 	
 	top_front_left (earwax.mapping.map_editor.AnchorPoints attribute)

 	top_front_right (earwax.mapping.map_editor.AnchorPoints attribute)

 	Track (class in earwax.track)

 	TrackTypes (class in earwax.track)

 	Trigger (class in earwax.cmd.game_level)

 	turn() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	type_bool (earwax.cmd.variable.VariableTypes attribute)

 	type_float (earwax.cmd.variable.VariableTypes attribute)

 	type_handler() (earwax.menus.config_menu.ConfigMenu method)

 	(earwax.menus.ConfigMenu method)

 	type_int (earwax.cmd.variable.VariableTypes attribute)

 	type_string (earwax.cmd.variable.VariableTypes attribute)

 	TypeHandler (class in earwax.menus)

 	(class in earwax.menus.config_menu)

U

 	
 	UnknownTypeError, [1]

 	up() (earwax.story.edit_level.ObjectPositionLevel method)

 	(earwax.story.ObjectPositionLevel method)

 	update() (in module earwax.cmd.subcommands.init_project)

 	update_kwargs() (earwax.sound.SoundManager method)

 	usable (earwax.story.RoomObjectTypes attribute)

 	(earwax.story.world.RoomObjectTypes attribute)

 	
 	use_exit() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	use_object() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

 	use_object_menu() (earwax.story.play_level.PlayLevel method)

 	(earwax.story.PlayLevel method)

V

 	
 	valid_label() (in module earwax.mapping.map_editor)

 	value_to_string() (earwax.config.ConfigValue method)

 	ValueAdjustments (class in earwax.menus.reverb_editor)

 	Variable (class in earwax.cmd.variable)

 	
 	VariableTypes (class in earwax.cmd.variable)

 	VaultFile (class in earwax.vault_file)

 	volume (earwax.mapping.box.BoxBounds attribute)

 	(earwax.mapping.BoxBounds attribute)

W

 	
 	walls_between() (earwax.mapping.box_level.BoxLevel method)

 	(earwax.mapping.BoxLevel method)

 	west (earwax.point.PointDirections attribute)

 	width (earwax.mapping.box.BoxBounds attribute)

 	(earwax.mapping.BoxBounds attribute)

 	world (earwax.story.play_level.PlayLevel attribute)

 	(earwax.story.PlayLevel attribute)

 	world_options() (earwax.story.context.StoryContext method)

 	(earwax.story.StoryContext method)

 	world_sounds() (earwax.story.edit_level.EditLevel method)

 	(earwax.story.EditLevel method)

 	
 	WorldAction (class in earwax.story)

 	(class in earwax.story.world)

 	WorldAmbiance (class in earwax.story)

 	(class in earwax.story.world)

 	WorldMessages (class in earwax.story)

 	(class in earwax.story.world)

 	WorldRoom (class in earwax.story)

 	(class in earwax.story.world)

 	WorldState (class in earwax.story)

 	(class in earwax.story.world)

 	WorldStateCategories (class in earwax.story)

 	(class in earwax.story.world)

Y

 	
 	yes_no() (earwax.menus.Menu class method)

 	(earwax.menus.menu.Menu class method)

 _static/down-pressed.png

_static/down.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Earwax’s documentation!

 		
 Introduction

 		
 Project Goals

 		
 Workflow

 		
 Full Example

 		
 Installation

 		
 Installing Using pip

 		
 Install Using Git

 		
 Running Tests

 		
 Building Documentation

 		
 Features

 		
 Implemented Features

 		
 Feature Requests

 		
 Tutorials

 		
 Getting Started

 		
 Editors

 		
 Creating An Editor

 		
 Motions

 		
 Submitting Text

 		
 Dismissing Editors

 		
 Editing With The Hat

 		
 Sounds

 		
 Buffer Directories

 		
 Promises

 		
 Threaded Promises

 		
 Staggered Promises

 		
 Stories

 		
 Prerequisites

 		
 Getting Started

 		
 Playing a Story

 		
 Editing a Story

 		
 The Main Menu

 		
 Start Game

 		
 Saving Stories

 		
 Building Stories

 		
 earwax

 		
 earwax package

 		
 Subpackages

 		
 Submodules

 		
 Module contents

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

